【題目】已知函數(shù)f(x)=( )x﹣log2x,0<a<b<c,f(a)f(b)f(c)<0,實數(shù)d是函數(shù)f(x)的一個零點.給出下列四個判斷:
①d>a;②d>b;③d<c;④d>c.其中可能成立的是(填序號)
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓: 的離心率,且橢圓上一點到點的距離的最大值為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設, 為拋物線: 上一動點,過點作拋物線的切線交橢圓于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某機械廠今年進行了五次技能考核,其中甲、乙兩名技術骨干得分的平均分相等,成績統(tǒng)計情況如莖葉圖所示(其中是09的某個整數(shù))
(1)若該廠決定從甲乙兩人中選派一人去參加技能培訓,從成績穩(wěn)定性角度考慮,你認為誰去比較合適?
(2)若從甲的成績中任取兩次成績作進一步分析,在抽取的兩次成績中,求至少有一次成績在(90,100]之間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= 畫出函數(shù)g(x)圖象;
(3)求函數(shù)g(x)在[﹣3,1]的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓與雙曲線有相同的焦點,,橢圓的一個短軸端點為,直線與雙曲線的一條漸近線平行,若橢圓于雙曲線的離心率分別為,,則的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,
(1)求實數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù);
(2)若x∈[﹣5,5],記y=f(x)的最大值為g(a),求g(a)的表達式并判斷其奇偶性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形中, // , ⊥, ⊥, 點是邊的中點, 將△沿折起,使平面⊥平面,連接, , , 得到如
圖所示的空間幾何體.
(Ⅰ)求證: ⊥平面;
(Ⅱ)若,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)= + 的定義域為( )
A.[﹣2,0)∪(0,2]
B.(﹣1,0)∪(0,2]
C.[﹣2,2]
D.(﹣1,2]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究小組在電腦上進行人工降雨模擬實驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗統(tǒng)計結(jié)果如下
方式 | 實施地點 | 大雨 | 中雨 | 小雨 | 模擬實驗次數(shù) |
A | 甲 | 2次 | 6次 | 4次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定對甲、乙、丙三地實施的人工降雨彼此互不影響,且不考慮洪澇災害,請根據(jù)統(tǒng)計數(shù)據(jù):
(1)求甲、乙、丙三地都恰為中雨的概率;
(2)考慮不同地區(qū)的干旱程度,當雨量達到理想狀態(tài)時,能緩解旱情,若甲、丙地需中雨或大雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),記“甲、乙、丙三地中緩解旱情的個數(shù)”為隨機變量,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com