【題目】已知函數(shù)f(x)=( x﹣log2x,0<a<b<c,f(a)f(b)f(c)<0,實數(shù)d是函數(shù)f(x)的一個零點.給出下列四個判斷:
①d>a;②d>b;③d<c;④d>c.其中可能成立的是(填序號)

【答案】①②③
【解析】因為f(x)=( x﹣log2x , 在定義域上是減函數(shù),
∴0<a<b<c時,f(a)>f(b)>f(c)
又因為f(a)f(b)f(c)<0,
所以一種情況是f(a),f(b),f(c)都為負值,①,
另一種情況是f(a)>0,f(b)>0,f(c)<0.②
對于①要求a,b,c都大于d,
對于②要求a,b都小于d是,c大于d.
兩種情況綜合可得d>c不可能成立
所以答案是:①②③.
【考點精析】掌握命題的真假判斷與應用是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓 的離心率,且橢圓上一點到點的距離的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設, 為拋物線 上一動點,過點作拋物線的切線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機械廠今年進行了五次技能考核,其中甲、乙兩名技術骨干得分的平均分相等,成績統(tǒng)計情況如莖葉圖所示(其中09的某個整數(shù))

1)若該廠決定從甲乙兩人中選派一人去參加技能培訓,從成績穩(wěn)定性角度考慮,你認為誰去比較合適?

2)若從甲的成績中任取兩次成績作進一步分析,在抽取的兩次成績中,求至少有一次成績在(90100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= 畫出函數(shù)g(x)圖象;
(3)求函數(shù)g(x)在[﹣3,1]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓與雙曲線有相同的焦點,,橢圓的一個短軸端點為,直線與雙曲線的一條漸近線平行,若橢圓于雙曲線的離心率分別為,,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+2,
(1)求實數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù);
(2)若x∈[﹣5,5],記y=f(x)的最大值為g(a),求g(a)的表達式并判斷其奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中, // , , 點邊的中點, 將△沿折起,使平面⊥平面,連接, , , 得到如

圖所示的空間幾何體.

(Ⅰ)求證: ⊥平面;

(Ⅱ)若,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= + 的定義域為(
A.[﹣2,0)∪(0,2]
B.(﹣1,0)∪(0,2]
C.[﹣2,2]
D.(﹣1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究小組在電腦上進行人工降雨模擬實驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗統(tǒng)計結(jié)果如下

方式

實施地點

大雨

中雨

小雨

模擬實驗次數(shù)

A

2次

6次

4次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定對甲、乙、丙三地實施的人工降雨彼此互不影響,且不考慮洪澇災害,請根據(jù)統(tǒng)計數(shù)據(jù):

1)求甲、乙、丙三地都恰為中雨的概率;

2考慮不同地區(qū)的干旱程度,當雨量達到理想狀態(tài)時,能緩解旱情,若甲、丙地需中雨或大雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),記甲、乙、丙三地中緩解旱情的個數(shù)為隨機變量,求的分布列和數(shù)學期望

查看答案和解析>>

同步練習冊答案