曲線y=2x-x3在x=-1處的切線方程為( 。
A、x-y+2=0
B、x+y-2=0
C、x+y+2=0
D、x-y-2=0
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用,直線與圓
分析:根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)在x=-1處的導(dǎo)數(shù),從而得到切線的斜率,再利用點(diǎn)斜式方程寫出切線方程即可.
解答: 解:y'=2-3x2
則y'|x=-1=-1,
而切點(diǎn)的坐標(biāo)為(-1,-1),
則曲線y=2x-x3在x=-1的處的切線方程為y+1=-(x+1)即為x+y+2=0.
故選C.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,考查運(yùn)算求解能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=e-5x+2在點(diǎn)(0,3)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若|
AB
|=2,|
AC
|=3,
AB
AC
=-3,則△ABC的面積S等于( 。
A、3
B、
3
C、
3
2
D、
3
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}滿足a1=b1,且對(duì)任意n∈N*都有an+bn=1,
an+1
an
=
bn
1-an2

(1)證明:數(shù)列{
1
an
}是等差數(shù)列;
(2)求數(shù)列{anbn}的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,AC=1,∠ABC=
3
,∠BAC=x,記f(x)=
AB
BC

(1)求f(x)解析式并標(biāo)出其定義域;
(2)設(shè)g(x)=6mf(x)+1(m<0),若g(x)的值域?yàn)閇-
3
2
,1),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時(shí)具有性質(zhì)“①最小正周期是π,②圖象關(guān)于x=
π
3
對(duì)稱,③在[-
π
6
,
π
3
]
上是增函數(shù)”的一個(gè)函數(shù)是(  )
A、y=sin(2x-
π
6
)
B、y=cos(2x+
π
3
)
C、y=sin(
x
2
+
π
6
)
D、y=cos(2x-
π
6
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2x(x∈[a,b]) 的值域?yàn)閇-1,3],當(dāng)a=-1時(shí),b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=4sin(3x+1)-x,則下列區(qū)間中f(x)不存在零點(diǎn)的是( 。
A、[0,1]
B、[-2,-1]
C、[3,4]
D、[-3,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校共有學(xué)生2000名,各年級(jí)男、女學(xué)生人數(shù)如右表示,已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二級(jí)女生的概率是0.19,現(xiàn)用分層抽樣的方法(按年級(jí)分層)在全校學(xué)生中抽取64人,則應(yīng)在高三級(jí)中抽取的學(xué)生人數(shù)
 

高一級(jí)高二級(jí)高三級(jí)
女生385ab
男生375360c

查看答案和解析>>

同步練習(xí)冊(cè)答案