設(shè)函數(shù)f(x)=4sin(3x+1)-x,則下列區(qū)間中f(x)不存在零點的是(  )
A、[0,1]
B、[-2,-1]
C、[3,4]
D、[-3,-2]
考點:正弦函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用,三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:首先求出利用函數(shù)f(x)=4sin(3x+1)-x,求出f(3)的范圍,進一步求出f(4)的范圍,最后利用f(3)•f(4)>0說明在(3,4)上不存在零點.
解答: 解:已知函數(shù)f(x)=4sin(3x+1)-x,由于sin10<0
所以:f(3)=4sin10-3<0
又因為:0<sin13<1
所以:f(4)=4sin13-4<0
所以f(3)•f(4)>0
所以:在(3,4)上不存在零點.
故選:C
點評:本題考查的知識要點:三角函數(shù)的值域,及函數(shù)零點的應(yīng)用,屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
,
n
是夾角為120°的單位向量,向量
a
=t
m
+(1-t)
n
,若
n
a
,則實數(shù)t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=2x-x3在x=-1處的切線方程為( 。
A、x-y+2=0
B、x+y-2=0
C、x+y+2=0
D、x-y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若-9、a、-l成等差數(shù)列,-9、m、b、n、-1成等比數(shù)列,則ab=( 。
A、15B、-l5
C、±l5D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角函數(shù)f(x)=Acos(ωx+φ)+b(A>ω>0,|φ|<
π
2
)的部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)若函數(shù)g(x)=f(x-
π
6
)+4cosx,試求函數(shù)g(x)在x∈[0,π]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在R上的增函數(shù),則不等式f(x)>f(2x-3)的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為奇函數(shù),當(dāng)x≥0時,f(x)=
x
.g(x)=
f(x),x≥0
f(-x),x<0
,
(1)求當(dāng)x<0時,函數(shù)f(x)的解析式,并在給定直角坐標(biāo)系內(nèi)畫出f(x)在區(qū)間[-5,5]上的圖象;(不用列表描點)
(2)根據(jù)已知條件直接寫出g(x)的解析式,并說明g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)為周期函數(shù)的是( 。
A、f(x)=sinx,x∈[0,2π]
B、f(x)=
xsin2x
x
C、f(x)=sin|x|
D、f(x)=2014(x∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實數(shù)集R上的函數(shù),且滿足f(x+2)=-
1
f(x)
,f(1)=-
1
8
,則f(2015)=
 

查看答案和解析>>

同步練習(xí)冊答案