【題目】設曲線上一點到焦點的距離為3

1)求曲線C方程;

2)設PQ為曲線C上不同于原點O的任意兩點,且滿足以線段PQ為直徑的圓過原點O,試問直線PQ是否恒過定點?若恒過定點,求出定點坐標;若不恒過定點,說明理由.

【答案】(1)(2)直線恒過定點,詳見解析

【解析】

(1) 由拋物線定義得,可解得的值,從而得到拋物線的方程.
(2)為直徑的圓過原點,有,設直線的方程為,與曲線C方程聯(lián)立,得到點 的坐標,同理得到點 的坐標,寫出的方程,從而得到答案.

解:(1)由拋物線定義得,

解得,所以曲線C方程為

2為直徑的圓過原點,

設直線的方程為,

與曲線C方程聯(lián)立,得

解得(舍去)或,則.

又直線的方程為,同理:.

又直線斜率存在,

的直線方程為

直線恒過定點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】巳知函數(shù),,其中.

(1)是函數(shù)的極值點,求的值;

(2)在區(qū)間上單調(diào)遞增,求的取值范圍;

(3),求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中國詩詞大會》是由CCTV-10自主研發(fā)的一檔大型文化益智節(jié)目,以“賞中華詩詞,尋文化基因品生活之美”為宗旨,帶動全民重溫經(jīng)典、從古人的智慧和情懷中汲取營養(yǎng)、涵養(yǎng)心靈,節(jié)目廣受好評還因為其頗具新意的比賽規(guī)則:每場比賽,106位挑戰(zhàn)者全部參賽,分為單人追逐賽和擂主爭霸賽兩部分單人追逐賽的最終優(yōu)勝者作為攻擂者與守擂擂主進行比拼,競爭該場比賽的擂主,擂主爭霸賽以搶答的形式展開,共九道題,搶到并回答正確者得一分,答錯則對方得一分,先得五分者獲勝,成為本場擂主,比賽結(jié)束已知某場擂主爭霸賽中,攻擂者與守擂擂主都參與每一次搶題且兩人搶到每道題的概率都是,攻擂者與守擂擂主正確回答每道題的概率分別為,,且兩人各道題是否回答正確均相互獨立.

1)比賽開始,求攻擂者率先得一分的概率;

2)比賽進行中,攻擂者暫時以領先,設兩人共繼續(xù)搶答了道題比賽結(jié)束,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個數(shù)學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學不僅讓人們感悟到科學與藝木的融合,數(shù)學與藝術審美的統(tǒng)一,而且還有其深刻的科學方法論意義.如圖,由波蘭數(shù)學家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形.

若在圖④中隨機選。c,則此點取自陰影部分的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線上動點到定點與定直線的距離之比為常數(shù);

1)求曲線的軌跡方程;

2)設圓心為的圓與曲線交于點與點,求的最小值,并求此時圓的方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商店投入38萬元經(jīng)銷某種紀念品,經(jīng)銷時間共60天,為了獲得更多的利潤,商店將每天獲得的利潤投入到次日的經(jīng)營中,市場調(diào)研表明,該商店在經(jīng)銷這第一產(chǎn)品期間第天的利潤(單位:萬元,),記第天的利潤率,例如.

1)求的值;

2)求第天的利潤率;

3)該商店在經(jīng)銷此紀念品期間,哪一天的利潤率最大?并求該天的利潤率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐S-ABCD中,四邊形ABCD是菱形,,,點P,Q,M分別是線段SD,PDAP的中點,點N是線段SB上靠近B的四等分點.

1)若R在直線MQ上,求證:平面ABCD;

2)若平面ABCD,求平面SAD與平面SBC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F為拋物線y2x的焦點,點AB在該拋物線上且位于x軸的兩側(cè),(其中O為坐標原點),則△ABO與△AFO面積之和的最小值是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1),求的單調(diào)區(qū)間;

(2)若當恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案