【題目】巳知函數(shù),,其中.

(1)是函數(shù)的極值點(diǎn),求的值;

(2)在區(qū)間上單調(diào)遞增,求的取值范圍;

(3),求證:.

【答案】1;(2;(3)參考解析

【解析】

試題(1)由函數(shù),所以可得,又是函數(shù)的極值點(diǎn),即.

2)因?yàn)?/span>在區(qū)間上單調(diào)遞增,所以對(duì)函數(shù)求導(dǎo),然后把變量分離,求函數(shù)的最值即可.

3)由即可得到,,按的降冪寫(xiě)成二次三項(xiàng)的形式,然后再配方,即可得到.再用放縮法即可得到結(jié)論.

試題解析:(1),

是函數(shù)的極值點(diǎn),

,解得,經(jīng)檢驗(yàn)為函數(shù)的極值點(diǎn),所以

(2)∵在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立,

對(duì)區(qū)間恒成立,

,則

當(dāng)時(shí),,有,

的取值范圍為

(3) 解法1

,令,

,則,

顯然上單調(diào)遞減,在上單調(diào)遞增,

,則,

解法2

表示上一點(diǎn)與直線上一點(diǎn)距離的平方.

,讓,解得,

直線的圖象相切于點(diǎn),

(另解:令,則

可得上單調(diào)遞減,在上單調(diào)遞增,

,則,

直線的圖象相切于點(diǎn)),

點(diǎn)(1,0)到直線的距離為,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,.

(Ⅰ)求平面與平面所成二面角(銳角)的余弦值;

(Ⅱ)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)直線所成角最小時(shí),求線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

1)存在實(shí)數(shù)使;

2)直線是函數(shù)圖象的一條對(duì)稱(chēng)軸;

3)的值域是;

4)若都是第一象限角,且,則

其中正確命題的序號(hào)為(

A.1)(2B.2)(3C.3)(4D.1)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在常數(shù) kkN * , k≥2)、d、t d , tR),使得無(wú)窮數(shù)列 {a n }滿足a n +1,則稱(chēng)數(shù)列{an }段差比數(shù)列,其中常數(shù) k、d、t 分別叫做段長(zhǎng)、段差、段比.設(shè)數(shù)列 {bn }段差比數(shù)列

1)已知 {bn }的首項(xiàng)、段長(zhǎng)、段差、段比分別為1、 2 d 、 t .若 {bn }是等比數(shù)列,求 d 、 t 的值;

2)已知 {bn }的首項(xiàng)、段長(zhǎng)、段差、段比分別為1、3 3 、1,其前 3n 項(xiàng)和為 S3n .若不等式 S3nλ 3n1對(duì) n N *恒成立,求實(shí)數(shù) λ 的取值范圍;

3)是否存在首項(xiàng)為 b,段差為 dd ≠ 0 )的段差比數(shù)列” {bn },對(duì)任意正整數(shù) n 都有 bn+6 = bn ,若存在, 寫(xiě)出所有滿足條件的 {bn }的段長(zhǎng) k 和段比 t 組成的有序數(shù)組 (k, t );若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014年7月18日15時(shí),超強(qiáng)臺(tái)風(fēng)“威馬遜”登陸海南。畵(jù)統(tǒng)計(jì),本次臺(tái)風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:

經(jīng)濟(jì)損失

4000元以下

經(jīng)濟(jì)損失

4000元以上

合計(jì)

捐款超過(guò)500元

30

捐款低于500元

6

合計(jì)

(1)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫(xiě)正確數(shù)字,并說(shuō)明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

(2)臺(tái)風(fēng)造成了小區(qū)多戶居民門(mén)窗損壞,若小區(qū)所有居民的門(mén)窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時(shí)刻來(lái)到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時(shí)刻來(lái)到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學(xué)期望.

附:臨界值表

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差都大于2,則稱(chēng)這個(gè)數(shù)列為阿當(dāng)數(shù)列”.

1)若數(shù)列阿當(dāng)數(shù)列,且,,,求實(shí)數(shù)的取值范圍;

2)是否存在首項(xiàng)為1的等差數(shù)列阿當(dāng)數(shù)列,且其前項(xiàng)和滿足?若存在,請(qǐng)求出的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

3)已知等比數(shù)列的每一項(xiàng)均為正整數(shù),且阿當(dāng)數(shù)列,,,當(dāng)數(shù)列不是阿當(dāng)數(shù)列時(shí),試判斷數(shù)列是否為阿當(dāng)數(shù)列,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),是兩條不同的直線,,是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,,則

②若,,則

③若,則

④若,,則

其中正確命題的序號(hào)是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,若對(duì)于任意實(shí)數(shù)對(duì),存在,使成立,則稱(chēng)集合垂直對(duì)點(diǎn)集” .給出下列四個(gè)集合:

;

;

.

其中是垂直對(duì)點(diǎn)集的序號(hào)是( .

A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)曲線上一點(diǎn)到焦點(diǎn)的距離為3

1)求曲線C方程;

2)設(shè)P,Q為曲線C上不同于原點(diǎn)O的任意兩點(diǎn),且滿足以線段PQ為直徑的圓過(guò)原點(diǎn)O,試問(wèn)直線PQ是否恒過(guò)定點(diǎn)?若恒過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不恒過(guò)定點(diǎn),說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案