【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,.

(Ⅰ)求平面與平面所成二面角(銳角)的余弦值;

(Ⅱ)點是線段上的動點,當直線所成角最小時,求線段的長度.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)分別以,,軸,建立空間直角坐標系.利用平面和平面的法向量,計算出平面與平面所成二面角(銳角)的余弦值.

(Ⅱ)利用向量共線得到的坐標.利用向量法求得直線所成角為的余弦值的平方的表達式,還原后利用配方法求得的最大值,即求得的最大值,根據(jù)余弦函數(shù)的單調性可知,此時直線所成角最小.根據(jù)最值成立的條件,求得線段的長度.

(Ⅰ)分別以,,,軸,建立空間直角坐標系.

,,,

,

取平面的法向量,設平面的法向量為,

,即,解得,取,則.

設平面與平面所成二面角(銳角)為,

.

(Ⅱ)設(其中),

,設當直線所成角為,則,

,

,,則,

,

,即,時,取得最大值,最大值為,此時取得最大值.

由余弦函數(shù)單調性可知,此時銳角取得最小值,且.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓中心在原點,焦點在坐標軸上,直線與橢圓在第一象限內的交點是,點軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且.

(1)求橢圓的方程;

(2)直線過點,且與橢圓交于兩點,求的內切圓面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若為單調函數(shù),求a的取值范圍;

2)若函數(shù)僅一個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為提高生產效率,開展技術創(chuàng)新活動,提出了完成某項生產任務的兩種新的生產方式.為比較兩種生產方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產方式,第二組工人用第二種生產方式.根據(jù)工人完成生產任務的工作時間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產方式的效率更高?并說明理由;

(2)求40名工人完成生產任務所需時間的中位數(shù),并將完成生產任務所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

超過

不超過

第一種生產方式

第二種生產方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認為兩種生產方式的效率有差異?

附:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)是自然對數(shù)的底數(shù))有兩個不同的零點,則實數(shù)的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司新上一條生產線,為保證新的生產線正常工作,需對該生產線進行檢測,現(xiàn)從該生產線上隨機抽取100件產品,測量產品數(shù)據(jù),用統(tǒng)計方法得到樣本的平均數(shù),標準差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估值。

(1)從該生產線加工的產品中任意抽取一件,記其數(shù)據(jù)為,依據(jù)以下不等式評判(表示對應事件的概率)

評判規(guī)則為:若至少滿足以上兩個不等式,則生產狀況為優(yōu),無需檢修;否則需檢修生產線,試判斷該生產線是否需要檢修;

(2)將數(shù)據(jù)不在內的產品視為次品,從該生產線加工的產品中任意抽取2件,次品數(shù)記為,求的分布列與數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某產品的銷售額與廣告費用之間的關系如下表:

(單位:萬元)

0

1

2

3

4

(單位:萬元)

10

15

30

35

若根據(jù)表中的數(shù)據(jù)用最小二乘法求得的回歸直線方程為,則下列說法中錯誤的是(

A.產品的銷售額與廣告費用成正相關

B.該回歸直線過點

C.當廣告費用為10萬元時,銷售額一定為74萬元

D.的值是20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】6名黨員干部分配到4個貧困村駐村扶貧,每個貧困村至少分配1名黨員干部,則不同的分配方案共有(

A.2640B.4800C.1560D.7200

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】巳知函數(shù),,其中.

(1)是函數(shù)的極值點,求的值;

(2)在區(qū)間上單調遞增,求的取值范圍;

(3),求證:.

查看答案和解析>>

同步練習冊答案