設(shè)f(x)為定義在區(qū)間I上的函數(shù).若對I上任意兩點x1,x2(x1≠x2),總有f(
x1+x2
2
)<
1
2
[f(x1)+f(x2)],則稱f(x)為I上的嚴格下凸函數(shù).若f(x)為I上的嚴格下凸函數(shù),其充要條件為:對任意x∈I有f″(x)>0成立(f″(x)是函數(shù)f(x)導函數(shù)的導函數(shù)),則以下結(jié)論正確的有
 

①f(x)=
2x+2014
3x+7
,x∈[0,2014]是嚴格下凸函數(shù).
②設(shè)x1,x2∈(0,
π
2
)且x1≠x2,則有tan(
x1+x2
2
)>
1
2
(tanx1+tanx2
③f(x)=-x3+3x2在區(qū)間[1,2014]上是嚴格下凸函數(shù).
④f(x)=
1
6
x3+sinx,(x∈(
π
6
,
π
3
))是嚴格下凸函數(shù).
考點:利用導數(shù)研究函數(shù)的單調(diào)性
專題:導數(shù)的綜合應(yīng)用
分析:根據(jù)嚴格下凸函數(shù)的充要條件,求f(x)>0恒成立即可.
解答: 解:①因為f(x)=
2x+2014
3x+7
=
2
3
(3x+7)+2014-
14
3
3x+7
=
2
3
+
6028
9x+21
,
所以f'(x)=-
6028×9
(9x+21)2
=-
6028
(3x+7)2

所以f″(x)=
2×3×6028
(3x+7)3
,
當x∈[0,2014]時,f″(x)>0恒成立,所以①正確.
②若x1=
π
3
,x2=
π
6
,則
1
2
(tanx1+tanx2)=
1
2
(tan
π
3
+tan
π
6
)=
1
2
3
+
3
3
)=
2
3
3

而tan(
x1+x2
2
)=tan
π
3
+
π
6
2
=tan
π
4
=1,
所以有tan(
x1+x2
2
)>
1
2
(tanx1+tanx2)不成立,所以②錯誤.
③因為f(x)=-x3+3x2,則f'(x)=-3x2+6x,f(x)=-6(x-1<0在[1,2014]上恒成立,
∴f(x)=-x3+3x2在區(qū)間[1,2014]上不是嚴格下凸函數(shù),所以③錯誤.
④若f(x)=
1
6
x3+sinx,則f'(x)=
1
2
x2+cosx,f(x)=x-sinx,當x∈[
π
6
,
π
3
],
設(shè)y=x-sinx,則y'=1-cosx≥0,所以函數(shù)f(x)=x-sinx單調(diào)遞增,
所以f
π
6
)=
π
6
-sin
π
6
=
π
6
-
1
2
>0,所以f(x)=
1
6
x3+sinx,(x∈(
π
6
,
π
3
)是嚴格下凸函數(shù),所以④正確.
故答案為:①④.
點評:本題主要考查新定義的應(yīng)用,考查學生的運算能力,綜合性較強.正確理解新定義是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知定點M(x0,y0)在直線l:f(x,y)=0外,則方程f(x,y)=f(x0,y0)表示( 。
A、與l重合的直線
B、與l平行的直線
C、與l垂直的直線
D、點M(x0,y0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
x
mx+1
的圖象過點(1,
2
3
),f(x0)=
1
1005
,f(xn-1)=xn,n=1,2,3,….
(1)問數(shù)列{
1
x0
}是否是等差數(shù)列?
(2)求x2014的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長為2,O是面ABCD的中心,點P在C1D1上移動,求|OP|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在原點,離心率為
2
2
,若F為左焦點,A為右頂點,B為短軸的一個端點,求tan∠ABF的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個正方體的頂點都在球面上,它的棱長為2cm,則球的表面積是( 。
A、8πcm2
B、12πcm2  
C、16πcm2  
D、20πcm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2sin(2x-
π
6
)(x∈[0,π])在下列哪個區(qū)間上單調(diào)遞增( 。
A、[
π
3
6
]
B、[
π
12
,
12
]
C、[0,
π
3
]
D、[0,π]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
a
x
)-x,若對任意的x∈(0,1),有不等式f(1-x)f(x)≥1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)的定義域為D,若?x∈D,?y∈D,使得f(y)=-f(x)成立,則稱函數(shù)f(x)為“美麗函數(shù)”.下列所給出的五個函數(shù):
①y=x2;
②y=
1
x-1

③f(x)=ln(2x+3);
④y=2x-2-x;
⑤y=2sinx-1.
其中是“美麗函數(shù)”的序號有
 

查看答案和解析>>

同步練習冊答案