11.函數(shù)y=ln|x|•sinx的圖象為(  )
A.B.C.D.

分析 根據(jù)函數(shù)的奇偶性,函數(shù)值的符號進行判斷.

解答 解:令f(x)=ln|x|•sinx,則f(-x)=ln|-x|•sin(-x)=-ln|x|•sinx=-f(x),
∴f(x)是奇函數(shù),圖象關于原點對稱,排除C,D;
令f(x)=0得ln|x|=0或sinx=0,
∴f(x)的最小正零點為1,
當x∈(0,1)上,ln|x|=lnx<0,sinx>0,∴f(x)<0,排除A,
故選B.

點評 本題考查了函數(shù)的圖象判斷,主要從奇偶性,單調(diào)性,特殊點等方面進行判斷,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合A={(x,y)|y2<x},B={(x,y)|xy=-2,x∈Z,y∈Z},則A∩B=( 。
A.B.{(2,-1)}C.{(-1,2),(-2,1)}D.{(1,-2),(-1,2),(-2,1)}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在三棱柱ABC-A1B1C1中,側(cè)面A1ABB1是菱形,側(cè)面C1CBB1是矩形.
(1)D是棱B1C1上一點,AC1∥平面A1BD,求證:D為B1C1的中點;
(2)若A1B⊥AC1,求證:平面A1ABB1⊥平面C1CBB1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一條弦所在的直線方程是x-y+5=0,弦的中點坐標是M(-4,1),則橢圓的離心率是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列四個結(jié)論中不正確的是(  )
A.若x>0,則x>sinx恒成立
B.命題“若x-sinx=0,則x=0”的否命題為“若x-sinx≠0,則x≠0”
C.“命題p∧q為真”是“命題p∨q為真”的充分不必要條件
D.命題“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0<0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A={x|(5x+1)(x-4)<0},B={x|x<2},則A∩B等于( 。
A.(-∞,4)B.$({-\frac{1}{5},2})$C.(2,4)D.$({-∞,-\frac{1}{5}})∪({2,4})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知a,b,c分別是△ABC的三個內(nèi)角A,B,C的三條對邊,且csinC-asinA=(b-a)sinB.
(Ⅰ)求角C的大小;
(Ⅱ)求cosA+cosB的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)的零點構(gòu)成一個公差為$\frac{π}{2}$的等差數(shù)列,$f(0)=-\frac{{\sqrt{3}}}{2}$,則f(x)的一個單調(diào)遞增區(qū)間是(  )
A.$(-\frac{5π}{12},\frac{π}{12})$B.$(-\frac{π}{6},\frac{π}{3})$C.$(-\frac{π}{12},\frac{5π}{12})$D.$(\frac{π}{12},\frac{7π}{12})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(1)已知角α終邊上一點P(m,1),$cosα=-\frac{1}{3}$,求tanα的值;
(2)求值:$\frac{tan150°cos(-210°)sin(-420°)}{sin1050°cos(-600°)}$.

查看答案和解析>>

同步練習冊答案