【題目】甲乙兩人進(jìn)行某種游戲比賽,規(guī)定:每一次勝者得1分,負(fù)者得0分;當(dāng)其中一人的得分比另一人的得分多2分時(shí)即贏得這場(chǎng)游戲,比賽隨之結(jié)束.同時(shí)規(guī)定:比賽次數(shù)最多不超過(guò)20次,即經(jīng)20次比賽,得分多者贏得這場(chǎng)游戲,得分相等為和局.已知每次比賽甲獲勝的概率為可,乙獲勝的概率為.假定各次比賽的結(jié)果是相互獨(dú)立的,比賽經(jīng)次結(jié)束.求的期望的變化范圍.

【答案】見(jiàn)解析

【解析】

記比賽經(jīng)次結(jié)束的概率為.

為奇數(shù),則甲乙得分之差亦為奇數(shù),比賽無(wú)法結(jié)束.

考慮為偶數(shù)時(shí),頭兩次比賽的結(jié)果:1.甲連勝或乙連勝兩次,稱(chēng)為有勝負(fù)的兩次,此結(jié)果出現(xiàn)的概率為; 2.甲乙各勝一次,稱(chēng)為無(wú)勝負(fù)的兩次,此結(jié)果有兩種情形,故出現(xiàn)的概率為.于是,1、2兩次,3、4兩次,、兩次均未分勝負(fù).若,則第、兩次為有勝負(fù)的兩次.從而,.

,則比賽必須結(jié)束.從而,.

綜上,.令.則

.因此,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的概率,;

(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫(xiě)出的所有可能值,并估計(jì)大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年“雙十一”期間,某商場(chǎng)舉辦了一次有獎(jiǎng)促銷(xiāo)活動(dòng),顧客消費(fèi)每滿1000元可參加一次抽獎(jiǎng)(例如:顧客甲消費(fèi)930元,不得參與抽獎(jiǎng);顧客乙消費(fèi)3400元,可以抽獎(jiǎng)三次)。如圖1,在圓盤(pán)上繪制了標(biāo)有A,B,C,D的八個(gè)扇形區(qū)域,每次抽獎(jiǎng)時(shí)由顧客按動(dòng)按鈕使指針旋轉(zhuǎn)一次,旋轉(zhuǎn)結(jié)束時(shí)指針會(huì)隨機(jī)停在圓盤(pán)上的某一個(gè)位置,顧客獲獎(jiǎng)的獎(jiǎng)次由指針?biāo)竻^(qū)域決定(指針與區(qū)域邊界線粗細(xì)忽略不計(jì))。商家規(guī)定:指針停在標(biāo)A,B,C,D的扇形區(qū)域分別對(duì)應(yīng)的獎(jiǎng)金為200元、150元、100元和50元。已知標(biāo)有A,B,C,D的扇形區(qū)域的圓心角成等差數(shù)列,且標(biāo)D的扇形區(qū)域的圓心角是標(biāo)A的扇形區(qū)域的圓心角的4倍.

(I)某顧客只抽獎(jiǎng)一次,設(shè)該顧客抽獎(jiǎng)所獲得的獎(jiǎng)金數(shù)為X元,求X的分布列和數(shù)學(xué)期望;

(II)如圖2,該商場(chǎng)統(tǒng)計(jì)了活動(dòng)期間一天的顧客消費(fèi)情況.現(xiàn)按照消費(fèi)金額分層抽樣選出15位顧客代表,其中獲得獎(jiǎng)金總數(shù)不足100元的顧客代表有7位.現(xiàn)從這7位顧客代表中隨機(jī)選取兩位,求這兩位顧客的獎(jiǎng)金總數(shù)和仍不足100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一盒中裝有9張各寫(xiě)有一個(gè)數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.

1)求所取3張卡片上的數(shù)字完全相同的概率;

2表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學(xué)期望.

(注:若三個(gè)數(shù)滿足,則稱(chēng)為這三個(gè)數(shù)的中位數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績(jī)分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評(píng)為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.

1)求的值;

2)填寫(xiě)下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?

文科生

理科生

合計(jì)

獲獎(jiǎng)

6

不獲獎(jiǎng)

合計(jì)

400

3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

附:,其中.

.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系 xOy 中,已知橢圓 C:的離心率為,且過(guò)點(diǎn) (),點(diǎn) P 在第四象限, A 為左頂點(diǎn), B 為上頂點(diǎn), PA 交 y 軸于點(diǎn) C,PB 交 x 軸于點(diǎn) D.

(1) 求橢圓 C 的標(biāo)準(zhǔn)方程;

(2) 求 △PCD 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體中,是正方形,,,且,,分別為棱、的中點(diǎn).

(1)求證:平面;

(2)求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

2)若函數(shù)在區(qū)間上無(wú)零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案