已知(其中ω>0)的最小正周期為π.

(1)求f(x)的單調遞增區(qū)間;

(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知求角C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項和為Sn,且滿足S5=3a5-2,又a1,a2,a5依次成等比數(shù)列,數(shù)列{bn}滿足b1=-9,bn+1=bn+
k
2
an+1
2
,(n∈N+)其中k為大于0的常數(shù).
(1)求數(shù)列{an},{bn}的通項公式;
(2)記數(shù)列an+bn的前n項和為Tn,若當且僅當n=3時,Tn取得最小值,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數(shù)f(x)的不動點,若函數(shù)f(x)=
x2+a
bx-c
(b,c∈N*)
有且僅有兩個不動點0和2,且f(-2)<-
1
2

(1)試求函數(shù)f(x)的表達式;
(2)已知各項不為0的數(shù)列{an}滿足4Sn•f(
1
an
)=1
,其中Sn表示數(shù)列{an}的前n項和,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數(shù)f(x)的不動點.若函數(shù)f(x)=
x2+a
bx-c
(b,c∈N*)有且僅有兩個不動點0和2,且f(-2)<-
1
2

(1)試求函數(shù)f(x)的單調區(qū)間,
(2)已知各項不為0的數(shù)列{an}滿足4Sn•f(
1
an
)=1,其中Sn表示數(shù)列{an}的前n項和,求證:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的前題條件下,設bn=-
1
an
,Tn表示數(shù)列{bn}的前n項和,求證:T2011-1<ln2011<T2010

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

對于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數(shù)f(x)的不動點,若函數(shù)f(x)=
x2+a
bx-c
(b,c∈N*)
有且僅有兩個不動點0和2,且f(-2)<-
1
2

(1)試求函數(shù)f(x)的表達式;
(2)已知各項不為0的數(shù)列{an}滿足4Sn•f(
1
an
)=1
,其中Sn表示數(shù)列{an}的前n項和,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知公差不為0的等差數(shù)列{an}的前n項和為Sn,且滿足S5=3a5-2,又a1,a2,a5依次成等比數(shù)列,數(shù)列{bn}滿足b1=-9,bn+1=bn+
k
2
an+1
2
,(n∈N+)其中k為大于0的常數(shù).
(1)求數(shù)列{an},{bn}的通項公式;
(2)記數(shù)列an+bn的前n項和為Tn,若當且僅當n=3時,Tn取得最小值,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案