5.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n+1-2,數(shù)列{bn}滿足bn=an•log2an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)n=1時(shí),a1=S1=2,${a_n}={S_n}-{S_{n-1}}={2^n}$,由此能求出數(shù)列{an}的通項(xiàng)公式.
(2 )由bn=an•log2an=${2}^{n}•lo{g}_{2}{2}^{n}$=n•2n,利用錯(cuò)位相減法能求出數(shù)列{bn}的前n項(xiàng)和.

解答 解:(1)∵數(shù)列{an}的前n項(xiàng)和Sn=2n+1-2,
∴n=1時(shí),a1=S1=2,(2分)
${S_n}={2^{n+1}}-2$,∴${S_{n-1}}={2^n}-2$(n≥2)
∴${a_n}={S_n}-{S_{n-1}}={2^n}$(n≥2),
n=1時(shí),上式成立,
∴數(shù)列{an}的通項(xiàng)公式為:${a_n}={2^n}$.    (6分)
( 2 )∵bn=an•log2an=${2}^{n}•lo{g}_{2}{2}^{n}$=n•2n,(7分)
∴數(shù)列{bn}的前n項(xiàng)和:
Tn=1•2+2•22+3•23+…+n•2n,①
2Tn=1•22+2•23+3•24+…+n•2n+1,②
①-②,得:-Tn=2+22+23+…+2n-n•2n+1
=$\frac{2(1-{2}^{n})}{1-2}-n•{2}^{n+1}$=(1-n)•2n+1-2,(10分)
∴${T_n}=({n-1}){2^{n+1}}+2$(12分)

點(diǎn)評 本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和公式的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.各項(xiàng)為正數(shù)的等比數(shù)列{an}中,a5與a15的等比中項(xiàng)為2$\sqrt{2}$,則log2a4+log2a16=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ax3+bx+c在x=2處取得極值為c-16.
(1)求a、b的值;
(2)若c=12,求f(x)在[-3,3]上的最大及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知${a_1}=1,{a_{n+1}}=3{S_n}+1,n∈{N^*}$.
(1)求a2,a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若對任意x∈(0,$\frac{1}{2}$),恒有4x<logax(a>0且a≠1),則實(shí)數(shù)a的取值范圍是[$\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖所示,點(diǎn)P在邊長為1的正方形的邊上運(yùn)動,設(shè)M是CD邊的中點(diǎn),則當(dāng)P沿著A-B-C-M運(yùn)動時(shí),以點(diǎn)P經(jīng)過的路程x為自變量,三角形APM的面積為y,函數(shù)y=f(x)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)變量x,y滿足$\left\{\begin{array}{l}x+y≤1\\ x≥0\\ y≥0\end{array}\right.$則點(diǎn)P(x+y,x-y)所在區(qū)域的面積為( 。
A.2B.1C.$\frac{1}{2}$1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.“x<0”是“x2+x<0”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax-lnx(a∈R).
(1)當(dāng)a=1時(shí),求f(x)的最小值;
(2)若存在x∈[1,3],使$\frac{f(x)}{{x}^{2}}$+lnx=2成立,求a的取值范圍;
(3)若對任意的x∈[1,+∞),有f(x)≥f($\frac{1}{x}$)成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案