10.如圖所示,點P在邊長為1的正方形的邊上運動,設M是CD邊的中點,則當P沿著A-B-C-M運動時,以點P經(jīng)過的路程x為自變量,三角形APM的面積為y,函數(shù)y=f(x)的圖象大致是( 。
A.B.C.D.

分析 當點在AB上移動時、當點在BC上移動時、當點在CD上時,討論y隨x的變化關

解答 解:根據(jù)題意和圖形可知:點P按A⇒B⇒C⇒M的順序在邊長為1的正方形邊上運動,△APM的面積分為3段;
當點在AB上移動時,高不變底邊逐漸變大,故面積逐漸變大;
當點在BC上移動時,y=S正方形-S△ADM-S△ABP-S△PCM
=1-$\frac{1}{4}$-$\frac{1}{2}$×1×(x-1)-$\frac{1}{2}$×$\frac{1}{2}$×(2-x)=-$\frac{1}{4}$x+$\frac{3}{4}$,此函數(shù)是關于x的遞減函數(shù);
當點在CD上時,高不變,底邊變小故面積越來越小直到0為止.
故選:A.

點評 要能根據(jù)函數(shù)圖象的性質和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結合實際意義得到正確的結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.若函數(shù)f(x)對任意的x∈R都有f(x+3)=-f(x+1),且f(1)=2017,則f(f(2017)+2)+1=( 。
A.-2017B.-2016C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1..設數(shù)列{an}滿足a2+a4=12,點pn(n,an)對任意的n∈N+,都有$\overline{{p_n}{p_{n+1}}}=(1,2)•$
(1)求數(shù)列{an}的通項公式an
(2)若數(shù)列{bn}滿足an=log2(bn+2),求數(shù)列$\{\frac{4^n}{{{b_n}{b_{n+1}}}}\}$的前n項和Tn,并證明$\frac{1}{7}≤{T_n}<\frac{1}{6}•$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}+tcosα\\ y=2+tsinα\end{array}\right.(t$是參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,C2曲線的極坐標方程為ρ2=4$\sqrt{2}$ρsin($θ+\frac{π}{4}$)-4.
(1)求曲線C2的直角坐標方程,并指出其表示何種曲線;
(2)若曲線C1與曲線C2交于A,B兩點,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設數(shù)列{an}的前n項和Sn=2n+1-2,數(shù)列{bn}滿足bn=an•log2an
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.三次函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖,則它的導函數(shù)f′(x)的圖象最可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設數(shù)列{an},{bn}分別為等差數(shù)列和等比數(shù)列.若a1b1=1,a2b2=1,則a3b3的取值范圍是(-∞,0)∪(0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)y=f(x)是定義在[a,b]上的增函數(shù),其中a,b∈R,且0<b<-a.設函數(shù)F(x)=[f(x)]2-[f(-x)]2,且F(x)不恒等于0,則對于F(x)有如下說法:
①定義域為[-b,b]
②是奇函數(shù)   
③最小值為0
④在定義域內(nèi)單調遞增
其中正確說法的序號是①②.(寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知x>0,y>0,且x+y+xy=1,則xy的最大值為( 。
A.1+$\sqrt{3}$B.$\sqrt{3}$-1C.4-2$\sqrt{3}$D.3-2$\sqrt{2}$

查看答案和解析>>

同步練習冊答案