A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
分析 首先左邊是xy的形式右邊是2x+y和常數(shù)的和的形式,考慮把右邊也轉(zhuǎn)化成xy的形式,使形式統(tǒng)一.可以猜想到應(yīng)用基本不等式,轉(zhuǎn)化后變成關(guān)于xy的方程,可把xy看成整體換元后求最小值,再根據(jù)基本不等式即可求出$\frac{1}{x}$+$\frac{1}{2y}$的最小值.
解答 解:由條件利用基本不等式可得xy=2x+y+6≥2$\sqrt{2xy}$+6,
令xy=t2,即t=$\sqrt{xy}$>0,可得t2-2$\sqrt{2}$t-6≥0.
即得到(t-3$\sqrt{2}$)(t+$\sqrt{2}$)≥0,可解得t≤-$\sqrt{2}$或t≥3$\sqrt{2}$.
又注意到t>0,故解為t≥3$\sqrt{2}$,
∴$\sqrt{xy}$≥3$\sqrt{2}$,
∴xy≥18
∵xy=x+2y+6,
∴$\frac{1}{2}$=$\frac{1}{x}$+$\frac{1}{2y}$+$\frac{3}{xy}$,
∴$\frac{1}{x}$+$\frac{1}{2y}$=$\frac{1}{2}$-$\frac{3}{xy}$≥$\frac{1}{2}$-$\frac{1}{6}$=$\frac{1}{3}$
故選:C.
點評 本題主要考查了用基本不等式解決最值問題的能力,以及換元思想和簡單一元二次不等式的解法,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.4 | B. | 0.5 | C. | 0.6 | D. | 0.7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 16 | C. | 20 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com