【題目】已知函數(shù) 有且僅有四個不同的點關(guān)于直線y=1的對稱點在直線kx+y﹣1=0上,則實數(shù)k的取值范圍為(
A.
B.
C.
D.

【答案】A
【解析】解:直線kx+y﹣1=0關(guān)于直線y=1的對稱直線為﹣kx+y﹣1=0, 則直線﹣kx+y﹣1=0與y=f(x)的函數(shù)圖象有4個交點,
當(dāng)x>0時,f′(x)=1﹣lnx,
∴當(dāng)0<x<e時,f′(x)>0,當(dāng)x>e時,f′(x)<0,
∴f(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減,
作出y=f(x)與直線﹣kx+y﹣1=0的函數(shù)圖象,如圖所示:

設(shè)直線y=kx+1與y=2x﹣xlnx相切,切點為(x1 , y1),
,解得:x1=1,k=1,
設(shè)直線y=kx+1與y=﹣x2 (x<0)相切,切點為(x2 , y2),
,解得x2=﹣1,k=
∵直線y=kx+1與y=f(x)有4個交點,
∴直線y=kx+1與y=f(x)在(﹣∞,0)和(0,+∞)上各有2個交點,
<k<1.
故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AB=AC,D為△ABC外接圓劣弧 上的點(不與點A,C重合),延長BD至E,延長AD交BC的延長線于F.
(1)求證:∠CDF=∠EDF;
(2)求證:ABACDF=ADFCFB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓C的方程為 (θ為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長度,直線l的極坐標(biāo)方程為ρcosθ+ρsinθ=m(m∈R).
(I)當(dāng)m=3時,判斷直線l與C的位置關(guān)系;
(Ⅱ)當(dāng)C上有且只有一點到直線l的距離等于 時,求C上到直線l距離為2 的點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>b>0)的左頂點和上頂點分別為A,B,左、右焦點分別是F1 , F2 , 在線段AB上有且僅有一個點P滿足PF1⊥PF2 , 則橢圓的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,點P的坐標(biāo)是(1,0),曲線C的方程為ρ=2 .以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率為﹣1的直線l經(jīng)過點P.
(1)寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)若直線l和曲線C相交于兩點A,B,求|PA|2+|PB|2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中, ,其面積為 ,則tan2Asin2B的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如甲圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點,將△ADE沿AE折起到△D1AE位置,使平面D1AE⊥平面ABCE,得到乙圖所示的四棱錐D1﹣ABCE.
(Ⅰ)求證:BE⊥平面D1AE;
(Ⅱ)求二面角A﹣D1E﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下命題:
①若函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),則f(x)的值域為{0};
②若函數(shù)f(x)是偶函數(shù),則f(|x|)=f(x);
③若函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),則f(x)不存在反函數(shù);
④若函數(shù)f(x)存在反函數(shù)f1(x),且f1(x)與f(x)不完全相同,則f(x)與f1(x)圖象的公共點必在直線y=x上;
其中真命題的序號是 . (寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ax3﹣xlnx,若x1、x2∈(0,+∞)且x1≠x2 , 不等式(x12﹣x22)(f(x1)﹣f(x2))>0恒成立,則實數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案