【題目】已知橢圓 (a>b>0)的左頂點和上頂點分別為A,B,左、右焦點分別是F1 , F2 , 在線段AB上有且僅有一個點P滿足PF1⊥PF2 , 則橢圓的離心率為(
A.
B.
C.
D.

【答案】D
【解析】解:依題意,作圖如下:A(﹣a,0),B(0,b),F(xiàn)1(﹣c,0),F(xiàn)2(c,0), ∴直線AB的方程為: ,整理得:bx﹣ay+ab=0,
設(shè)直線AB上的點P(x,y)
則bx=ay﹣ab,
∴x= y﹣a,
∵PF1⊥PF2 ,
=(﹣c﹣x,﹣y)(c﹣x,﹣y)=x2+y2﹣c2
=( 2+y2﹣c2
令f(y)=( 2+y2﹣c2 ,
則f′(y)=2( y﹣a)× +2y,
∴由f′(y)=0得:y= ,于是x=﹣ ,
=(﹣ 2+( 2﹣c2=0,
整理得: =c2 , 又b2=a2﹣c2 , e2= ,
∴e4﹣3e2+1=0,
∴e2= ,又橢圓的離心率e∈(0,1),
∴e=
橢圓的離心率 ,
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x(a+lnx)有極小值﹣e2 . (Ⅰ)求實數(shù)a的值;
(Ⅱ)若k∈Z,且 對任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙兩人每次射擊命中目標(biāo)的概率分別為 ,且各次射擊相互獨立,若按甲、乙、甲、乙…的次序輪流射擊,直到有一人擊中目標(biāo)就停止射擊,則停止射擊時,甲射擊了兩次的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 ,函數(shù) . (Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,若 ,a=2,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種產(chǎn)品的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)成本y(萬元)有如下幾組樣本數(shù)據(jù):

x

3

4

5

6

y

2.5

3.1

3.9

4.5

據(jù)相關(guān)性檢驗,這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,通過線性回歸分析,求得到其回歸直線的斜率為0.8,則當(dāng)該產(chǎn)品的生產(chǎn)成本是6.7萬元時,其相應(yīng)的產(chǎn)量約是(
A.8
B.8.5
C.9
D.9.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,動圓經(jīng)過點M(0,t﹣2),N(0,t+2),P(﹣2,0).其中t∈R.
(1)求動圓圓心E的軌跡方程;
(2)過點P作直線l交軌跡E于不同的兩點A,B,直線OA與直線OB分別交直線x=2于兩點C,D,記△ACD與△BCD的面積分別為S1 , S2 . 求S1+S2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 有且僅有四個不同的點關(guān)于直線y=1的對稱點在直線kx+y﹣1=0上,則實數(shù)k的取值范圍為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,a,b,c成等比數(shù)列,且a2﹣c2=ac﹣bc.
(Ⅰ)求∠A的大;
(Ⅱ)若a= ,且sinA+sin(B﹣C)=2sin2C,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若正態(tài)變量ξ服從正態(tài)分布N(μ,σ2),則ξ在區(qū)間(μ﹣σ,μ+σ),(μ﹣2σ,μ+2σ),(μ﹣3σ,μ+3σ)內(nèi)取值的概率分別是0.6826,0.9544,0.9973.已知某大型企業(yè)為10000名員工定制工作服,設(shè)員工的身高(單位:cm)服從正態(tài)分布N(172,52),則適宜身高在177~182cm范圍內(nèi)員工穿的服裝大約要定制套.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案