【題目】已知函數(shù).
(1)若函數(shù)在處有極值,求的值;
(2)若對于任意的在上單調(diào)遞增,求的最小值.
【答案】(1) (2).
【解析】試題分析:(1)由 ,根據(jù)題意設(shè)有解得 或,進(jìn)行檢驗舍去得所求b值;(2)由題意知對任意的都成立,所以對任意的都成立,因為,所以在上為單調(diào)增函數(shù)或為常數(shù)函數(shù),①當(dāng)為常數(shù)函數(shù)時, ;②當(dāng)為增函數(shù)時, ,即對任意都成立,求二次函數(shù)最大值即得解.
試題解析:
(1)由 ,
于是,根據(jù)題意設(shè)有,
解得 或,
當(dāng)時,所以函數(shù),所以函數(shù)有極值點;
當(dāng)時,所以函數(shù),所以無極值點,
所以 .
(2)由題意知對任意的都成立,
所以對任意的都成立,
因為,所以在上為單調(diào)增函數(shù)或為常數(shù)函數(shù),
①當(dāng)為常數(shù)函數(shù)時, ;
②當(dāng)為增函數(shù)時, ,
即對任意都成立,
又,所以時, ,所以,
所以的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在軸上且通過點的圓與直線相切.
(1)求圓的方程;
(2)已知直線經(jīng)過點,并且被圓C截得的弦長為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的兩個焦點分別為, ,過作橢圓長軸的垂線交橢圓于點,若為等腰直角三角形,則橢圓的離心率是( )
A. B. C. D.
【答案】C
【解析】試題分析:解:設(shè)點P在x軸上方,坐標(biāo)為(),∵為等腰直角三角形,∴|PF2|=|F1F2|, ,故選D.
考點:橢圓的簡單性質(zhì)
點評:本題主要考查了橢圓的簡單性質(zhì).橢圓的離心率是高考中選擇填空題常考的題目.應(yīng)熟練掌握圓錐曲線中a,b,c和e的關(guān)系
【題型】單選題
【結(jié)束】
8
【題目】“”是“對任意的正數(shù), ”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于區(qū)間,若函數(shù)同時滿足:①在上是單調(diào)函數(shù);②函數(shù),的值域是,則稱區(qū)間為函數(shù)的“保值”區(qū)間.
(1)求函數(shù)的所有“保值”區(qū)間.
(2)函數(shù)是否存在“保值”區(qū)間?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中(為坐標(biāo)原點),已知兩點,,且三角形的內(nèi)切圓為圓,從圓外一點向圓引切線,為切點。
(1)求圓的標(biāo)準(zhǔn)方程.
(2)已知點,且,試判斷點是否總在某一定直線上,若是,求出直線的方程;若不是,請說明理由.
(3)已知點在圓上運(yùn)動,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, 底面分別是的中點, 在,且.
(1)求證: 平面;
(2)在線段上是否存在點,使二面角的大小為?若存在,求出的長;
若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某奶茶公司對一名員工進(jìn)行測試以便確定其考評級別.公司準(zhǔn)備了兩種不同的奶茶共5 杯,其顏色完全相同,并且其中3杯為奶茶,另外2杯為奶茶,公司要求此員工一一品嘗后,從5杯奶茶中選出2杯奶茶.若該員工2杯都選奶茶,則評為優(yōu)秀;若2 杯選對1杯奶茶,則評為良好;否則評為及格.假設(shè)此人對和兩種奶茶沒有鑒別能力.
(Ⅰ)求此人被評為優(yōu)秀的概率;(Ⅱ)求此人被評為良好及以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的首項,公差.且、、分別是等比數(shù)列的第2、3、4項.
(1)求數(shù)列與的通項公式;
(2)設(shè)數(shù)列滿足,求的值(結(jié)果保留指數(shù)形式).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(改編)已知正數(shù)數(shù)列的前項和為,且滿足;在數(shù)列中,
(1)求數(shù)列和的通項公式;
(2)設(shè),數(shù)列的前項和為. 若對任意,存在實數(shù),使恒成立,求的最小值;
(3)記數(shù)列的前項和為,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com