【題目】(改編)已知正數(shù)數(shù)列的前項和為,且滿足;在數(shù)列中,

(1)求數(shù)列的通項公式;

(2)設,數(shù)列的前項和為. 若對任意,存在實數(shù),使恒成立,求的最小值;

(3)記數(shù)列的前項和為,證明:.

【答案】(1)(2)(3)見解析

【解析】分析:(1)根據(jù)間的關系可得數(shù)列為等差數(shù)列,進而可得通項公式;由兩邊取倒數(shù)后整理得,可得等比數(shù)列,從而可求得.(2)根據(jù)題意得到數(shù)列的通項公式,再根據(jù)錯位相減法求得,根據(jù)的單調(diào)性和不等式可得進而可得的范圍.(3)根據(jù)及等比數(shù)列的求和公式可得

詳解:(1)∵,

,

,

整理得

,

又當時,,解得

∴數(shù)列是首項為,公差為1的等差數(shù)列,

兩邊取倒數(shù)得,

,

,

∴數(shù)列是首項為,公比為3的等比數(shù)列,

,

(2)由題意得,

②得

,

易知數(shù)列單調(diào)遞增,

,

,

,

,

的最小值為

(3)由題意得

 

,

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處有極值,求的值;

(2)若對于任意的上單調(diào)遞增,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列和等比數(shù)列滿足,

1的通項公式;

2求和:

【答案】1;(2

【解析】試題分析:(1)根據(jù)等差數(shù)列 ,列出關于首項、公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關于首項 ,公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.

試題解析:(1)設等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)設等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

從而.

型】解答
結(jié)束】
18

【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.

(1)若,且為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,動點滿足,且,則方向上的投影的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)棱底面,底面為長方形,且,的中點,作于點.

(1)證明:平面;

(2)若三棱錐的體積為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐V-ABC中,平面VAB平面ABC, VAB為等邊三角形,ACBCAC=BC=,O,M分別為AB,VA的中點。

(I)求證:VB//平面MOC;

II)求證:平面MOC平面VAB;

(III)求三棱錐V-ABC的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三年級實驗班與普通班共1000名學生,其中實驗班學生200人,普通班學生800人,現(xiàn)將高三一?荚嚁(shù)學成績制成如圖所示頻數(shù)分布直方圖,按成績依次分為5組,其中第一組([0, 30)),第二組([30, 60)),第三組([60, 90)),的頻數(shù)成等比數(shù)列,第一組與第五組([120, 150))的頻數(shù)相等,第二組與第四組([90, 120))的頻數(shù)相等。

(1)求第三組的頻率;

(2)已知實驗班學生成績在第五組,在第四組,剩下的都在第三組,試估計實驗班學生數(shù)學成績的平均分;

(3)在(2)的條件下,按分層抽樣的方法從第5組中抽取5人進行經(jīng)驗交流,再從這5人中隨機抽取3人在全校師生大會上作經(jīng)驗報告,求抽取的3人中恰有一個普通班學生的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別為角A,B,C的對邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長;
(2)求角B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 分別為的中點.

(1)證明: 平面;

(2)證明:平面平面

(3)求四棱錐的體積.

查看答案和解析>>

同步練習冊答案