(選做題)
如圖,在△ABC中,D是AC的中點,E是BD的中點,AE的延長線交BC于F。
(1)求的值;
(2)若△BEF的面積為S1,四邊形CDEF的面積為 S2,求S1:S2的值。       
證明:(1)過D點作DG∥BC,并交AF于G 點,      
∵E是BD的中點,
∴BE=DE,      
又∵∠EBF=∠EDG,∠BEF=∠DE G,      
∴△BEF≌△DEG,則BF=DG,      
∴BF:FC=DG:FC, 
又∵D是AC的中點,則DG:FC=1:2,
則BF:FC=1:2;
    
(2)若△BEF以BF為底,△BDC以BC為底,
則由(1)知BF:BC=1:3,
又由BE:BD=1:2可知h1:h2=1:2,其中h1、h2分別為△BEF和△BDC的高,
,
則S1:S2=1:5.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)A.(不等式選做題)不等式|
x+2
x+1
|≤1的實數(shù)解集為
 

B.(幾何證明選做題)如圖,在△ABC中,AB=AC,以BC為直徑的半圓O與邊AB相交于點D,切線DE⊥AC,垂足為點E.則
AE
CE
=
 

C.(坐標系與參數(shù)方程選做題)若△ABC的底邊BC=10,∠B=2∠A,以B點為極點,BC 為極軸,則頂點A 的極坐標方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•肇慶二模)(幾何證明選講選做題)
如圖,在Rt△ABC中,斜邊AB=12,直角邊AC=6,如果以C為圓心的圓與AB相切于D,則⊙C的半徑長為
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(幾何證明選講選做題)
如圖,在Rt△ABC中,∠C=90°,E為AB上一點,以BE為直徑作圓O剛好與AC相切于點D,若AB:BC=2:1,  CD=
3
,則圓O的半徑長為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•廣州模擬)(《幾何證明選講》選做題)如圖,在△ABC中,∠A=60°,∠ACB=70°,CF是△ABC的邊AB上的高,F(xiàn)P⊥BC于點P,F(xiàn)Q⊥AC于點Q,則∠CQP的大小為
50°
50°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•陜西)(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)若存在實數(shù)x使|x-a|+|x-1|≤3成立,則實數(shù)a的取值范圍是
-2≤a≤4
-2≤a≤4

B.(幾何證明選做題)如圖,在圓O中,直徑AB與弦CD垂直,垂足為E,EF⊥DB,垂足為F,若AB=6,AE=1,則DF•DB=
5
5

C.(坐標系與參數(shù)方程)直線2ρcosθ=1與圓ρ=2cosθ相交的弦長為
3
3

查看答案和解析>>

同步練習冊答案