【題目】下列關于回歸分析的說法中錯誤的是(

A.殘差圖中殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適

B.兩個模型中殘差平方和越小的模型擬合的效果越好

C.在線性回歸方程中,當解釋變量x每增加一個單位時,預報變量就平均增加02個單位

D.甲、乙兩個模型的分別約為098080,則模型乙的擬合效果更好

【答案】D

【解析】

根據回歸分析的相關概念對各個選項一一進行判斷可得答案.

解:A項,殘差可用于判斷模型的模擬效果,當殘差圖中殘差點比較均勻地落在水平的帶狀區(qū)域中,說明模擬效果好,選用的模型比較合適;當殘差圖中殘差點之間相差越大,形成帶狀區(qū)間越寬,則模擬效果越差,故A項表述正確;

B項,殘差平方和即全部誤差的平方和,殘差平方和越小,則全部誤差越小,模型擬合的效果越好,故B項表述正確;

C. 由線性回歸方程的性質,在方程中,當解釋變量x每增加一個單位時,預報變量就平均增加02個單位,可得C項表述正確;

D項,是指相關系數(shù),的值越大,說明相關程度越強,則殘差平方和越小,模型的擬合效果越好,故模型甲的擬合效果更好;

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心為,點是圓上的動點,點,線段的垂直平分線交點.

(1)求點的軌跡的方程;

(2)過點作斜率不為0的直線與(1)中的軌跡交于,兩點,點關于軸的對稱點為,連接軸于點,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖①,正方形的邊長為4,,,把四邊形沿折起,使得平面,的中點,如圖②

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦點坐標是,過點且垂直于長軸的直線交橢圓于兩點,且.

1)求橢圓的標準方程;

2)過點的直線與橢圓交于不同的兩點,問三角形內切圓面積是否存在最大值?若存在,請求出這個最大值及此時直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為實數(shù).

1)當時,求函數(shù)上的最大值和最小值;

2)求函數(shù)的單調區(qū)間;

3)若函數(shù)的導函數(shù)上有零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個命題:①命題“若”的逆否命題為“若,則”;②“”是“”的充分不必要條件; ③若為假命題,則均為假命題;④對于命題使得,則,均有.其中,真命題的個數(shù)是 ( )

A. 1個B. 2個C. 3個D. 4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個數(shù)是____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,A,B是半徑為2的圓周上的定點,P為圓周上的動點,是銳角,大小為β.圖中陰影區(qū)域的面積的最大值為

A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列說法:

①命題 ,則的否命題是假命題;

②命題 ,使 ,則 ;

函數(shù) 為偶函數(shù)的充要條件;

④命題 ,使,命題 中,若 ,則,那么命題為真命題.

其中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案