【題目】已知定義域為{x|x≠0}的偶函數f(x),其導函數為f′(x),對任意正實數x滿足xf′(x)>﹣2f(x),若g(x)=x2f(x),則不等式g(x)<g(1﹣x)的解集是( )
A.( ,+∞)
B.(﹣∞, )
C.(﹣∞,0)∪(0, )
D.(0, )
【答案】C
【解析】解:∵f(x)是定義域為{x|x≠0}的偶函數,
∴f(﹣x)=f(x).
對任意正實數x滿足xf′(x)>﹣2f(x),
∴xf′(x)+2f(x)>0,
∵g(x)=x2f(x),
∴g′(x)=2xf(x)+x2f′(x)>0.
∴函數g(x)在(0,+∞)上單調遞增,
∴g(x)在(﹣∞,0)遞減;
由不等式g(x)<g(1﹣x),
∴ 或 ,
解得:0<x< ,或x<0
∴不等式g(x)<g(1﹣x)的解集為:{x|0<x< 或x<0}.
故選:C.
【考點精析】利用導數的幾何意義和利用導數研究函數的單調性對題目進行判斷即可得到答案,需要熟知通過圖像,我們可以看出當點趨近于時,直線與曲線相切.容易知道,割線的斜率是,當點趨近于時,函數在處的導數就是切線PT的斜率k,即;一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減.
科目:高中數學 來源: 題型:
【題目】已知等比數列{an}滿足an+1+an=104n﹣1(n∈N*),數列{bn}的前n項和為Sn , 且bn=log2an .
(1)求bn , Sn;
(2)設cn= ,證明: + +…+ < Sn+1(n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一裝有水的直三棱柱ABC-A1B1C1容器(厚度忽略不計),上下底面均為邊長為5的正三角形,側棱為10,側面AA1B1B水平放置,如圖所示,點D、E、F、G分別在棱CA、CB、C1B1、C1A1上,水面恰好過點D,E,F,C,且CD=2
(1)證明:DE∥AB;
(Ⅱ)若底面ABC水平放置時,求水面的高
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數的圖像與軸的交點為,在軸右側的第一個最高點和第一個與軸交點分別為
(1)求的解析式;
(2)將函數圖像上所有點的橫坐標變?yōu)樵瓉淼?/span>倍(縱坐標不變),再將所得圖像沿軸正方向平移個單位,得到函數的圖像,求的解析式;
(3)在(2)的條件下求函數在上的值域。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com