【題目】已知

(1)求函數(shù)的定義域;

(2)判斷函數(shù)的奇偶性,并予以證明。

【答案】(1)(-1,1)(2)奇函數(shù)

【解析】

(1)由題意可得f(x)﹣g(x)=loga(1+x)﹣loga(1﹣x)=,由 求得函數(shù)的定義域;

(2)由于f(x)﹣g(x)=,它的定義域為(﹣1,1),令h(x)=f(x)﹣g(x),可得h(﹣x)=﹣h(x),從而得到函數(shù)h(x)=f(x)﹣g(x)為奇函數(shù).

(1)由于f(x)=loga(1+x),g(x)=loga(1﹣x),故f(x)﹣g(x)=loga(1+x)﹣loga(1﹣x)=,

,求得﹣1<x<1,故函數(shù)的定義域為(﹣1,1).

(2)由于f(x)﹣g(x)=loga(1+x)﹣loga(1﹣x)=,它的定義域為(﹣1,1),令h(x)=f(x)﹣g(x),

可得h(﹣x)==﹣=﹣h(x),故函數(shù)h(x)=f(x)﹣g(x)為奇函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種新產(chǎn)品投放市場的100天中,前40天價格呈直線上升,而后60天其價格呈直線下降,現(xiàn)統(tǒng)計出其中4天的價格如下表:

時間

第4天

第32天

第60天

第90天

價格(千元)

23

30

22

7

(1)寫出價格關(guān)于時間的函數(shù)關(guān)系式;(表示投放市場的第天);

(2)銷售量與時間的函數(shù)關(guān)系:,則該產(chǎn)品投放市場第幾天銷售額最高?最高為多少千元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知所在的平面, 的直徑, 上一點(diǎn),且中點(diǎn), 中點(diǎn).

(1)求證: ;

(2)求證:

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程sin(2x+ )+m=0在(0,π)內(nèi)有相異兩解α,β,則tan(α+β)=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為{x|x≠0}的偶函數(shù)f(x),其導(dǎo)函數(shù)為f′(x),對任意正實(shí)數(shù)x滿足xf′(x)>﹣2f(x),若g(x)=x2f(x),則不等式g(x)<g(1﹣x)的解集是(
A.( ,+∞)
B.(﹣∞,
C.(﹣∞,0)∪(0,
D.(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在半徑為R的圓桌上擺放同樣大小的半徑為r的硬幣.要求硬幣不準(zhǔn)露出圓桌面邊緣,并且所擺硬幣彼此不能重疊.當(dāng)擺放n枚硬幣之后,圓桌上就不能再多擺放一枚這種硬幣了.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,其中a為常數(shù)

(I)討論f(x)的單調(diào)性;

()當(dāng)a=-1,若不等式恒成立,求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某糧庫擬建一個儲糧倉如圖所示,其下部是高為2的圓柱,上部是母線長為2的圓錐,現(xiàn)要設(shè)計其底面半徑和上部圓錐的高,若設(shè)圓錐的高,儲糧倉的體積為.

(1)求關(guān)于的函數(shù)關(guān)系式;(圓周率用表示)

(2)求為何值時,儲糧倉的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C對邊分別為a,b,c,且c<a,已知 =﹣2,tanB=2 ,b=3.
(1)求a和c的值;
(2)求sin(B﹣C)的值.

查看答案和解析>>

同步練習(xí)冊答案