2.對?a,b∈R,定義運算:a⊕b=a(a-b),a?b=b(a+b).則下列判斷正確的是④⑤.
①2016⊕2017=2017;②(x+1)⊕1=1?x;③f(x)=x?(x⊕1)的零點為1,$\frac{1}{2}$;
④a⊕b=b⊕a的必要不充分條件是a=b;⑤a?b=b?a的充要條件是a⊕b=b⊕a.

分析 根據(jù)對?a,b∈R,定義運算:a⊕b=a(a-b),a?b=b(a+b),分別判斷5個命題,即可得出結(jié)論.

解答 解:①2016⊕2017=2016×(2016-2017)=-2016,不正確;
②(x+1)⊕1=(x+1)x,1?x=1•(1-x)=1-x,所以不正確;
③f(x)=x?(x⊕1)=x3(x-1)的零點為0,1,所以不正確;
④a=b,則a⊕b=b⊕a;a⊕b=a(a-b),b⊕a=b(b-a),若a⊕b=b⊕a,則a(a-b)=b(b-a),∴a=b或a=-b,所以a⊕b=b⊕a的必要不充分條件是a=b,正確;
⑤a?b=b?a,則b(a+b)=a(a+b),∴a=b或a=-b,由④知道a⊕b=b⊕a,所以a?b=b?a的充要條件是a⊕b=b⊕a,正確.
故答案為:④⑤.

點評 本題考查新定義,考查學生分析解決問題的能力,考查學生的計算能力,正確理解新定義是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知角α終邊上一點P(-4,3 ),求$\frac{cos(\frac{3π}{2}+α)sin(-5π-α)}{cos(6π-α)sin(\frac{π}{2}+α)tan(-3π+α)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=ln(|3x-1|-1)的定義域是( 。
A.(-∞,0)B.$(\frac{2}{3},+∞)$C.$(-∞,0)∪(\frac{2}{3},+∞)$D.$(0,\frac{2}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,在三棱錐S-ABC中,AC⊥BC,AC=3,BC=4,SA=SB=$\sqrt{13}$,平面SAB⊥平面ABC,則二面角S-BC-A的大小為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在四棱錐B-ACDE中,底面ACDE是直角梯形,AC垂直于AE和CD,BA⊥底面ACDE,且AB=AC=DC=1,EA=$\frac{1}{2}$.
(Ⅰ)求證:平面BCD⊥平面ABC;
(Ⅱ)求平面BDE與平面ABC所成二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖為某幾何體的三視圖,則該幾何體的外接球的表面積為( 。
A.31πB.32πC.34πD.36π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.若存在n個不同的正整數(shù)a1,a2,…,an,對任意1≤i<j≤n,都有$\frac{{{a_i}+{a_j}}}{{{a_i}-{a_j}}}$∈Z,則稱這n個不同的正整數(shù)a1,a2,…,an為“n個好數(shù)”.
(1)請分別對n=2,n=3構(gòu)造一組“好數(shù)”;
(2)證明:對任意正整數(shù)n(n≥2),均存在“n個好數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知sin(π-θ)-cos($\frac{π}{2}$+θ)=2$\sqrt{3}$cos(2π-θ),則sinθcosθ-cos2θ=( 。
A.$\frac{1-\sqrt{3}}{4}$B.$\frac{\sqrt{3}-1}{4}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.(x2+$\frac{1}{x^2}$+2)5展開式中x4項的系數(shù)為120.

查看答案和解析>>

同步練習冊答案