7.設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若a是從區(qū)間[0,2]任取的一個(gè)數(shù),b是從區(qū)間[0,3]任取的一個(gè)數(shù),求上述方程有實(shí)數(shù)的概率.

分析 首先分析一元二次方程有實(shí)根的條件,得到a≥b
(1)本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的基本事件可以通過(guò)列舉得到結(jié)果數(shù),滿(mǎn)足條件的事件在前面列舉的基礎(chǔ)上得到結(jié)果數(shù),求得概率.
(2)本題是一個(gè)幾何概型,試驗(yàn)的全部結(jié)束所構(gòu)成的區(qū)域?yàn)閧(a,b)|0≤a≤2,0≤b≤3},滿(mǎn)足條件的構(gòu)成事件A的區(qū)域?yàn)閧(a,b)|0≤a≤2,0≤b≤3,a≥b},根據(jù)概率等于面積之比,得到概率.

解答 解:設(shè)事件A為“方程有實(shí)根”.
當(dāng)a>0,b>0時(shí),方程有實(shí)根的充要條件為a≥b
(1)由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的基本事件共12個(gè):
(0,0)(0,1)(0,2)(0,3)(1,0)(1,1)(1,2)(1,3)(2,0)(2,1)(2,2)(2,3)
其中第一個(gè)數(shù)表示a的取值,第二個(gè)數(shù)表示b的取值.
事件A中包含6個(gè)基本事件,
∴事件A發(fā)生的概率為P=$\frac{6}{12}$=$\frac{1}{2}$;
(2)由題意知本題是一個(gè)幾何概型,
試驗(yàn)的全部結(jié)束所構(gòu)成的區(qū)域?yàn)閧(a,b)|0≤a≤2,0≤b≤3}
滿(mǎn)足條件的構(gòu)成事件A的區(qū)域?yàn)閧(a,b)|0≤a≤2,0≤b≤3,a≥b}
∴所求的概率是$\frac{\frac{1}{2}×2×2}{2×3}$=$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查古典概型及其概率公式,考查幾何概型及其概率公式,本題把兩種概率放在一個(gè)題目中進(jìn)行對(duì)比,得到兩種概率的共同之處和不同點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如果a=log41,b=log23,c=log2π,那么三個(gè)數(shù)的大小關(guān)系是( 。
A.c>b>aB.a>c>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)ax2e-x(a≠0)
(Ⅰ)若直線(xiàn)y=e-1x為曲線(xiàn)y=f(x)的切線(xiàn),求實(shí)數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)函數(shù)g(x)=$\frac{1}{2}$(x-$\frac{1}{x}$+f(x))-$\frac{1}{2}$|x-$\frac{1}{x}$-f(x)|-cx2(x>0),在(Ⅰ)的條件下,若函數(shù)g(x)為增函數(shù),求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.甲、乙兩盒中各裝有大小相同的小球9個(gè),其中甲盒中紅色、黑色、白色小球的個(gè)數(shù)分別為2,3,4;乙盒中紅色、黑色、白色小球的個(gè)數(shù)均為3.學(xué)生A從甲盒中取球,學(xué)習(xí)B從乙盒中取球.
(Ⅰ)若A,B各取一球,求兩人所取的球顏色不同的概率;
(Ⅱ)若每人依次各取2球,稱(chēng)同一人手中兩球鹽酸相同的取法為成功取法,記成功取法次數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知實(shí)數(shù)x,y滿(mǎn)足方程x2+y2-4x+1=0.
(1)求$\frac{y}{x}$的最值;
(2)求y-x的最值;
(3)求x2+y2的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)$f(x)=|x|+\frac{m}{x}-2$(x≠0).
(1)當(dāng)m=2時(shí),判斷f(x)在(-∞,0)的單調(diào)性,并用定義證明;
(2)討論f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.直線(xiàn)y=k(x-1)與A(3,2)、B(0,1)為端點(diǎn)的線(xiàn)段有公共點(diǎn),則k的取值范圍是( 。
A.[-1,1]B.[-1,3]C.(-∞,-1]∪[3,+∞)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)y=f(x)的定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)x∈(-∞,0)時(shí),xf'(x)<f(-x)(其中f'(x)是f(x)的導(dǎo)函數(shù)),若a=$\sqrt{3}$f($\sqrt{3})$,b=(lg3)f(lg3),c=$({log_3}\frac{1}{3})f({log_3}\frac{1}{3})$,則( 。
A.c>a>bB.c>b>aC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.正數(shù)a,b滿(mǎn)足$\frac{1}{a}+\frac{1}=1$,則$\frac{1}{a-1}+\frac{4}{b-1}$的最小值為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案