【題目】設(shè)函數(shù)則不等式的解集為( )
A. B. C. D.
【答案】A
【解析】
根據(jù)題意,分析可得f(x)為奇函數(shù)且在R上為增函數(shù),則有f(1﹣2x)+f(x)>0f(1﹣2x)>﹣f(x)f(1﹣2x)>f(﹣x)1﹣2x>﹣x,解可得x的取值范圍,即可得答案.
根據(jù)題意,函數(shù)f(x)=2x﹣2﹣x,
則f(﹣x)=2﹣x﹣2x=﹣(2x﹣2﹣x)=﹣f(x),f(x)為奇函數(shù),
又由f(x)=2x﹣2﹣x,其導(dǎo)數(shù)為f′(x)=(2x+2﹣x)ln2>0,
則函數(shù)f(x)在R上為增函數(shù),
則f(1﹣2x)+f(x)>0f(1﹣2x)>﹣f(x)f(1﹣2x)>f(﹣x)1﹣2x>﹣x,
解可得:x<1,
即不等式的解集為(﹣∞,1);
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于異面直線,有下列五個(gè)命題:
①過(guò)直線有且僅有一個(gè)平面,使;
②過(guò)直線有且僅有一個(gè)平面,使;
③在空間存在平面,使,;
④在空間不存在平面,使,;
⑤過(guò)異面直線外一點(diǎn)一定存在一個(gè)平面,使,其中,
正確的命題的個(gè)數(shù)為( )
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=sinx的圖象向右平移個(gè)單位,橫坐標(biāo)縮小至原來(lái)的倍(縱坐標(biāo)不變)得到函數(shù)y=g(x)的圖象.
(1)求函數(shù)g(x)的解析式;
(2)若關(guān)于x的方程2g(x)-m=0在x∈[0,]時(shí)有兩個(gè)不同解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正整數(shù)的所有約數(shù)之和用表示,(比如).試答下列各問(wèn):
(1)證明:如果和互質(zhì),那么;
(2)當(dāng)是的約數(shù)(),且.試證是質(zhì)數(shù).其次,如果是正整數(shù),是質(zhì)數(shù),試證也是質(zhì)數(shù);
(3)設(shè)(為正整數(shù),為奇數(shù)),且.試證存在質(zhì)數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列1,1,3,3,,,…,,是由兩個(gè)1,兩個(gè)3,兩個(gè),…,兩個(gè)按從小到大順序排列,數(shù)列各項(xiàng)的和記為,對(duì)于給定的自然數(shù),若能從數(shù)列中選取一些不同位置的項(xiàng),使得這些項(xiàng)之和恰等于,便稱為一種選項(xiàng)方案,和數(shù)為的所有選項(xiàng)方案的種數(shù)記為.試求:
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x),給出下列判斷:(1)函數(shù)的值域?yàn)?/span>;(2)在定義域內(nèi)有三個(gè)零點(diǎn);(3)圖象是中心對(duì)稱圖象.其中正確的判斷個(gè)數(shù)為( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某種氣墊船的最大航速是海里小時(shí),船每小時(shí)使用的燃料費(fèi)用和船速的平方成正比.若船速為海里小時(shí),則船每小時(shí)的燃料費(fèi)用為元,其余費(fèi)用(不論船速為多少)都是每小時(shí)元。甲乙兩地相距海里,船從甲地勻速航行到乙地.
(1)試把船從甲地到乙地所需的總費(fèi)用,表示為船速(海里小時(shí))的函數(shù),并指出函數(shù)的定義域;
(2)當(dāng)船速為每小時(shí)多少海里時(shí),船從甲地到乙地所需的總費(fèi)用最少?最少費(fèi)用為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直四棱柱的底面是菱形,,,,E,M,N分別是,,的中點(diǎn).
(1)證明:平面;
(2)求點(diǎn)C到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com