16.某幾何體的三視圖如圖所示,則該幾何體的體積等于$\frac{16}{3}$.

分析 根據(jù)三視圖得該幾何體是放倒的四棱錐,由三視圖求出幾何元素的長度、判斷出線面的位置關(guān)系,由錐體的體積公式求出該幾何體的體積.

解答 解:根據(jù)三視圖得:該幾何體是放倒的四棱錐,
直觀圖如圖所示:E是棱CD的中點,
且PE⊥平面ABCD,PE=2,
四棱錐的底面是邊長為4、2的矩形,高為PE,
所以該幾何體的體積V=$\frac{1}{3}×4×2×2$
=$\frac{16}{3}$,
故答案為:$\frac{16}{3}$.

點評 本題考查三視圖求幾何體的體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標(biāo)軸上,離心率為$\sqrt{2}$,且過點(4,-$\sqrt{10}$).點M(3,m)在雙曲線上.
(1)求雙曲線方程;
(2)求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,平面ABCD⊥平BCEF,且四邊形ABC為矩形,四邊形BCEF為直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.
(Ⅰ)求證:AF∥平面CDE;
(Ⅱ)求直線BE與平面ADE所成角的余弦值;
(Ⅲ)求點B到平面ADE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{40}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知正四棱柱ABCD-A1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點B作B1C的垂線交側(cè)棱CC1于點E,交B1C于點F.
(Ⅰ)求證:A1C⊥平面BED;
(Ⅱ)求A1B與平面BDE所成角的正弦值;
(Ⅲ)求二面角D-BE-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在矩形ABCD中,AB=4,BC=8,E為邊AD的中點,分別沿BE,CE將△ABE,△DCE折疊,使平面ABE和平面DCE均與平面BCE垂直.

(Ⅰ)證明:AD∥平面BEC;
(Ⅱ)求點E到平面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,棱長為a的正方體,N是棱A1D1的中點;
(I)求直線AN與平面BB1D1D所成角的大;
(Ⅱ)求B1到平面ANC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=sinωx(ω>0)的圖象在y軸右邊的對稱軸與其交點從左向右依次記為在點列A1、A2、A3、…、An、…在點列{An}中存在不同三點Ak、Ai、Ap,使得△AkAiAp是等腰直角三角形,將滿足上述條件的ω值從小到大組成的數(shù)列記為{ωn}.則ω2016=$\frac{4031π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.不等式$\frac{1}{x}$>3的解集是(0,$\frac{1}{3}$).

查看答案和解析>>

同步練習(xí)冊答案