下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為
y
=0.7x+0.35,那么表中m值為(  )
x3456
y2.5m44.5
A、4B、3.15C、4.5D、3
考點:線性回歸方程
專題:計算題,概率與統(tǒng)計
分析:根據(jù)表格中所給的數(shù)據(jù),求出這組數(shù)據(jù)的橫標(biāo)和縱標(biāo)的平均值,表示出這組數(shù)據(jù)的樣本中心點,根據(jù)樣本中心點在線性回歸直線上,代入得到關(guān)于m的方程,解方程即可.
解答: 解:∵根據(jù)所給的表格可以求出
.
x
=
3+4+5+6
4
=4.5,
.
y
=
2.5+m+4+4.5
4
=
11+m
4

∵這組數(shù)據(jù)的樣本中心點在線性回歸直線上,
11+m
4
=0.7×4.5+0.35,
∴m=3,
故選:D.
點評:本題考查線性回歸方程的應(yīng)用,是一個基礎(chǔ)題,題目的運算量不大,解題的關(guān)鍵是理解樣本中心點在線性回歸直線上.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-sinx(x∈R)的單調(diào)增區(qū)間為( 。
A、[-
π
2
+2kπ,
π
2
+2kπ](k∈Z)
B、[
π
2
+2kπ,
2
+2kπ](k∈Z)
C、[2kπ,π+2kπ](k∈Z)
D、[-π+2kπ,2kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax-1(a∈R).
(1)試討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a=1時,求證:當(dāng)x≥0時f(x)≥f(-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

存在實數(shù)a,使得對函數(shù)y=g(x)定義域內(nèi)的任意x,都有a<g(x)成立,則稱a為g(x)的下界,若a為所有下界中的最大的數(shù),則稱a為函數(shù)g(x)的下確界,已知x、y、z∈R+,且以x、y、z為邊長可以構(gòu)成三角形,求f(x,y,z)=
xy+yz+zx
(x+y+z)2
 的上確界.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

討論函數(shù)f(x)=ax+
b
x
(a>0,b>0)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2
x-1
x+1
的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是正項數(shù)列{an}的前n項和,且Sn=
1
3
a
2
n
+
1
2
an
(1)求an
(2)設(shè)
bn
=
3
4an+3
(n∈N+),且數(shù)列{bn}的前n項和為Tn,試比較Tn
1
4
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線的頂點是雙曲線x2-y2=1的中心,焦點是雙曲線的右頂點
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若直線l過點C(2,1)交拋物線于M,N兩點,是否存在直線l,使得C恰為弦MN的中點?若存在,求出直線l方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)在第1年初購買一臺價值為120萬元的設(shè)備M,M的價值在使用過程中逐年減少,從第2年到第6年,每年初M的價值比上年初減少10萬元;從第7年開始,每年初M的價值為上年初的75%.
(1)求第n年初M的價值an的表達式;
(2)設(shè)An=
a1+a2+…+an
n
若An大于80萬元,則M繼續(xù)使用,否則須在第n年初對M更新,證明:第6年初仍可對M繼續(xù)使用.

查看答案和解析>>

同步練習(xí)冊答案