【題目】2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考已知橢圓 的左頂點為,上頂點為,直線與直線垂直,垂足為點,且點是線段的中點.

I)求橢圓的方程;

II)如圖,若直線 與橢圓交于, 兩點,點在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.

【答案】I;(II

【解析】試題分析:(1)根據(jù)題意可得, 故斜率為,由直線與直線垂直,可得,因為點是線段的中點,∴點的坐標是,

代入直線得連立方程即可得, ;(2)∵四邊形為平行四邊形,∴,設, , ,∴ ,得,將點坐標代入橢圓方程得,

到直線的距離為,利用弦長公式得EF,則平行四邊形的面積為

.

解析:(1)由題意知,橢圓的左頂點,上頂點,直線的斜率,

,

因為點是線段的中點,∴點的坐標是,

由點在直線上,∴,且

解得,

∴橢圓的方程為.

(2)設, ,

代入消去并整理得

,

,

∵四邊形為平行四邊形,∴ ,

,將點坐標代入橢圓方程得,

到直線的距離為 ,

∴平行四邊形的面積為

.

故平行四邊形的面積為定值.

型】解答
束】
21

【題目】已知函數(shù) .

(1)當時,討論函數(shù)的單調性;

(2)當時,求證:函數(shù)有兩個不相等的零點, ,且.

【答案】(1)見解析;(2)見解析

【解析】試題分析:(1)討論函數(shù)單調區(qū)間即解導數(shù)大于零求得增區(qū)間,導數(shù)小于零求得減區(qū)間(2)函數(shù)有兩個不同的零點,先分析函數(shù)單調性得零點所在的區(qū)間, 上單調遞增,在上單調遞減.∵, , ,∴函數(shù)有兩個不同的零點,且一個在內,另一個在內.

不妨設 ,要證,即證, 上是增函數(shù),故,且,即證. 由,得

, ,得上單調遞減,∴,且∴, ,∴,即∴,故得證

解析:(1)當時, ,得

,得.

時, , ,所以,故上單調遞減;

時, , ,所以,故上單調遞增;

時, , ,所以,故上單調遞減;

所以, 上單調遞減,在上單調遞增.

(2)證明:由題意得,其中,

,由,

所以上單調遞增,在上單調遞減.

, ,

∴函數(shù)有兩個不同的零點,且一個在內,另一個在內.

不妨設,

要證,即證,

因為,且上是增函數(shù),

所以,且,即證.

,得

, ,

.

,∴ ,

時, ,即上單調遞減,

,且∴ ,

,即∴,故得證.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1),五邊形中, .如圖(2),將沿折到的位置,得到四棱錐.點為線段的中點,且平面

(1)求證:平面平面;

(2)若直線所成角的正切值為,設,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某小店每天以每份5元的價格從食品廠購進若干份食品,然后以每份10元的價格出售.如果當天賣不完,剩下的食品還可以每份1元的價格退回食品廠處理.

(Ⅰ)若小店一天購進16份,求當天的利潤(單位:元)關于當天需求量(單位:份,)的函數(shù)解析式;

(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:

日需求量

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

(i)小店一天購進16份這種食品,表示當天的利潤(單位:元),求的分布列及數(shù)學期望;

(ii)以小店當天利潤的期望值為決策依據(jù),你認為一天應購進食品16份還是17份?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖四棱錐中, 平面,底面是梯形, , , , , , 的中點, 上一點,且).

(1)若時,求證: 平面;

(2)若直線與平面所成角的正弦值為,求異面直線與直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程是為參數(shù)),以為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,且直線與曲線交于兩點.

(Ⅰ)求直線的普通方程及曲線的直角坐標方程;

(Ⅱ)把直線軸的交點記為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國政府實施“互聯(lián)網(wǎng)+”戰(zhàn)略以來,手機作為客戶端越來越為人們所青睞,通過手機實現(xiàn)衣食住行消費已經(jīng)成為一種主要的消費方式,“一機在手,走遍天下”的時代已經(jīng)到來。在某著名的夜市,隨機調查了100名顧客購物時使用手機支付的情況,得到如下的列聯(lián)表,已知其中從使用手機支付的人群中隨機抽取1人,抽到青年的概率為.

(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有的把握認為“市場購物用手機支付與年齡有關”?

(2)現(xiàn)采用分層抽樣從這100名顧客中按照“使用手機支付”和“不使用手機支付”中抽取得到一個容量為5的樣本,設事件為“從這個樣本中任選2人,這2人中至少有1人是不使用手機支付的”,求事件發(fā)生的概率?

列聯(lián)表

青年

中老年

合計

使用手機支付

60

不使用手機支付

24

合計

100

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)有兩個極值點,,且

)求的取值范圍,并討論的單調性.

)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側棱底面,的中點,.

(1)求證:平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸長是短軸長的倍,且過點

(1)求橢圓的標準方程;

(2)若的頂點、在橢圓上, 所在的直線斜率為, 所在的直線斜率為,若,求的最大值.

查看答案和解析>>

同步練習冊答案