【題目】設(shè)函數(shù)有兩個極值點(diǎn),,且

)求的取值范圍,并討論的單調(diào)性.

)證明:

【答案】(1)見解析;(2)見解析.

【解析】試題分析 : (1)先確定函數(shù)的定義域然后求導(dǎo)數(shù),由題意知,是方程的兩個均大于-1的不相等的實(shí)根,建立不等關(guān)系解之即可,在函數(shù)的定義域內(nèi)解不等式 ,求出單調(diào)區(qū)間;
(2)是方程的根,將表示,消去得到關(guān)于的函數(shù),研究函數(shù)的單調(diào)性求出函數(shù)的最大值,即可證得不等式.

試題解析 :

)由題意知,函數(shù)的定義域是,

有兩個不同的實(shí)數(shù)根,,故的判別式,即,且,,①

,故.因此的取值范圍是

當(dāng)變化時的變化情況如下表:

極大值

極小值

因此在區(qū)間是增函數(shù),在上是減函數(shù).

)由題意和①知,,,

于是

設(shè)函數(shù),則

當(dāng)時,

當(dāng)時,,故上是增函數(shù).

于是,當(dāng).因此.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個幾何體的三視圖如圖所示,則這個幾何體的體積等于______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=x+b與函數(shù)f(x)=ln x的圖象交于兩個不同的點(diǎn)A,B,其橫坐標(biāo)分別為x1,x2,x1<x2.

(1)b的取值范圍;

(2)當(dāng)x2≥2,證明x1·<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考已知橢圓 的左頂點(diǎn)為,上頂點(diǎn)為,直線與直線垂直,垂足為點(diǎn),且點(diǎn)是線段的中點(diǎn).

I)求橢圓的方程;

II)如圖,若直線 與橢圓交于, 兩點(diǎn),點(diǎn)在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.

【答案】I;(II

【解析】試題分析:(1)根據(jù)題意可得 故斜率為,由直線與直線垂直,可得,因為點(diǎn)是線段的中點(diǎn),∴點(diǎn)的坐標(biāo)是,

代入直線得,連立方程即可得, ;(2)∵四邊形為平行四邊形,∴,設(shè), ,∴ ,得,將點(diǎn)坐標(biāo)代入橢圓方程得,

點(diǎn)到直線的距離為,利用弦長公式得EF,則平行四邊形的面積為

.

解析:(1)由題意知,橢圓的左頂點(diǎn),上頂點(diǎn),直線的斜率

,

因為點(diǎn)是線段的中點(diǎn),∴點(diǎn)的坐標(biāo)是,

由點(diǎn)在直線上,∴,且,

解得, ,

∴橢圓的方程為.

(2)設(shè) , ,

代入消去并整理得

,

,

∵四邊形為平行四邊形,∴ ,

,將點(diǎn)坐標(biāo)代入橢圓方程得

點(diǎn)到直線的距離為,

∴平行四邊形的面積為

.

故平行四邊形的面積為定值.

型】解答
結(jié)束】
21

【題目】已知函數(shù), .

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)當(dāng)時,求證:函數(shù)有兩個不相等的零點(diǎn), ,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)上的最大值為1,求實(shí)數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正方向建立平面直角坐標(biāo)系,曲線的直角坐標(biāo)方程是為參數(shù)).

(Ⅰ)將曲線的參數(shù)方程化為普通方程;

(Ⅱ)求曲線與曲線交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線上的兩個點(diǎn),點(diǎn)的坐標(biāo)為,直線的斜率為.設(shè)拋物線的焦點(diǎn)在直線的下方.

)求k的取值范圍;

)設(shè)CW上一點(diǎn),且,過兩點(diǎn)分別作W的切線,記兩切線的交點(diǎn)為. 判斷四邊形是否為梯形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為過點(diǎn)的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2),的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校運(yùn)動會的立定跳遠(yuǎn)和30秒跳繩兩個單項比賽分成預(yù)賽和決賽兩個階段.下表為10名學(xué)生的預(yù)賽成績,其中有三個數(shù)據(jù)模糊.

學(xué)生序號

1

2

3

4

5

6

7

8

9

10

立定跳遠(yuǎn)(單位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳繩(單位:次)

63

a

75

60

63

72

70

a1

b

65

在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則

A2號學(xué)生進(jìn)入30秒跳繩決賽

B5號學(xué)生進(jìn)入30秒跳繩決賽

C8號學(xué)生進(jìn)入30秒跳繩決賽

D9號學(xué)生進(jìn)入30秒跳繩決賽

查看答案和解析>>

同步練習(xí)冊答案