【題目】已知橢圓的離心率為,過(guò)橢圓的左、右焦點(diǎn)分別作傾斜角為的直線,且之間的距離為1

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線與橢圓只有一個(gè)公共點(diǎn),求點(diǎn)到直線的距離之積.

【答案】1 21

【解析】

1)由已知求出,即得解;

2)當(dāng)直線的斜率不存在時(shí),點(diǎn)到直線的距離之積為1;當(dāng)直線的斜率存在時(shí),設(shè)其方程為,聯(lián)立直線和橢圓方程得到,求出,

,即得解.

1)設(shè),由之間的距離為1,得,所以

由橢圓的離心率為,得,所以

所以橢圓的標(biāo)準(zhǔn)方程為

2)當(dāng)直線的斜率不存在時(shí),直線的方程為,點(diǎn)到直線的距離之積為1

當(dāng)直線的斜率存在時(shí),設(shè)其方程為,

聯(lián)立,消去,

因?yàn)橹本與橢圓只有一個(gè)公共點(diǎn),所以,得

點(diǎn)到直線的距離,

點(diǎn)到直線的距離,

所以,

綜上可得,若直線與橢圓只有一個(gè)公共點(diǎn),則點(diǎn)到直線的距離之積為1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l和橢圓相交于點(diǎn),

1)當(dāng)直線l過(guò)橢圓的左焦點(diǎn)和上頂點(diǎn)時(shí),求直線l的方程

2)點(diǎn)上,若,求面積的最大值:

3)如果原點(diǎn)O到直線l的距離是,證明:為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是某原料在市場(chǎng)上從2013年至2019年這7年中每年的平均價(jià)格(單位:千元/噸)數(shù)據(jù):

年份

2013

2014

2015

2016

2017

2018

2019

年份代號(hào)

1

2

3

4

5

6

7

平均價(jià)格

(單位:千元/噸)

1)從表中數(shù)據(jù)可認(rèn)為線性相關(guān)性較強(qiáng),求出以為解釋變量為預(yù)報(bào)變量的線性回歸方程(系數(shù)精確到);

2)以(1)的結(jié)論為依據(jù),預(yù)測(cè)2032年該原料價(jià)格.預(yù)估該原料價(jià)格在哪一年突破1萬(wàn)元/噸?

參考數(shù)據(jù):,,

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為, 軸負(fù)半軸上有一點(diǎn),且

1)若過(guò)三點(diǎn)的圓 恰好與直線相切,求橢圓C的方程;

2)在(1)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某保險(xiǎn)公司為客戶(hù)定制了5個(gè)險(xiǎn)種:甲,一年期短險(xiǎn);乙,兩全保險(xiǎn);丙,理財(cái)類(lèi)保險(xiǎn);丁,定期壽險(xiǎn):戊,重大疾病保險(xiǎn),各種保險(xiǎn)按相關(guān)約定進(jìn)行參保與理賠.該保險(xiǎn)公司對(duì)5個(gè)險(xiǎn)種參?蛻(hù)進(jìn)行抽樣調(diào)查,得出如下的統(tǒng)計(jì)圖例,以下四個(gè)選項(xiàng)錯(cuò)誤的是(

A.54周歲以上參保人數(shù)最少B.1829周歲人群參?傎M(fèi)用最少

C.丁險(xiǎn)種更受參保人青睞D.30周歲以上的人群約占參保人群的80%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線軸交于點(diǎn),過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),點(diǎn)在第一象限.

,求直線的方程;

,點(diǎn)為準(zhǔn)線上任意一點(diǎn),求證:直線,,的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列滿(mǎn)足,且存在常數(shù),使得對(duì)任意的都有,則稱(chēng)數(shù)列k控?cái)?shù)列

1)若公差為d的等差數(shù)列“2控?cái)?shù)列,求d的取值范圍;

2)已知公比為的等比數(shù)列的前n項(xiàng)和為,數(shù)列都是k控?cái)?shù)列,求q的取值范圍(用k表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且.

(1)求證:數(shù)列為等比數(shù)列;

2)設(shè)數(shù)列的前項(xiàng)和為,求證: 為定值;

3)判斷數(shù)列中是否存在三項(xiàng)成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】綠水青山就是金山銀山.某山村為做好水土保持,退耕還林,在本村的山坡上種植水果,并推出山村游等旅游項(xiàng)目.為預(yù)估今年7月份游客購(gòu)買(mǎi)水果的情況,隨機(jī)抽樣統(tǒng)計(jì)了去年7月份100名游客的購(gòu)買(mǎi)金額.分組如下:,, ,得到如圖所示的頻率分布直方圖:

(1)請(qǐng)用抽樣的數(shù)據(jù)估計(jì)今年7月份游客人均購(gòu)買(mǎi)水果的金額(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表).

(2)若把去年7月份購(gòu)買(mǎi)水果不低于80元的游客,稱(chēng)為“水果達(dá)人”. 填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為“水果達(dá)人”與性別有關(guān)系?

水果達(dá)人

非水果達(dá)人

合計(jì)

10

30

合計(jì)

(3)為吸引顧客,商家特推出兩種促銷(xiāo)方案.方案一:每滿(mǎn)80元可立減10元;方案二:金額超過(guò)80元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7折.若每斤水果10元,你打算購(gòu)買(mǎi)12斤水果,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.

附:參考公式和數(shù)據(jù):,.臨界值表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

同步練習(xí)冊(cè)答案