A. | 1 | B. | $\frac{1}{256}$ | C. | 64 | D. | $\frac{1}{64}$ |
分析 利用定積分求出a的值,再根據(jù)題意求出n的值,令x=1求得展開式中的所有項(xiàng)的系數(shù)之和.
解答 解:$a=\int_0^π{({sinx+cosx})dx}$=(-cosx+sinx)${|}_{0}^{π}$=2,
∴${({{x^2}-\frac{1}{ax}})^n}$=${{(x}^{2}-\frac{1}{2x})}^{n}$;
其展開式中只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,
∴展開式中共有7項(xiàng),∴n=6;
令x=1,得展開式中的所有項(xiàng)的系數(shù)之和是
${(1-\frac{1}{2})}^{6}$=$\frac{1}{64}$.
故選:D.
點(diǎn)評 本題考查了二項(xiàng)式定理與定積分的應(yīng)用問題,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{π}{3}$ | B. | -$\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6π | B. | ($\sqrt{2}$+$\sqrt{5}$+1)π | C. | (2$\sqrt{2}$+2$\sqrt{5}$)π | D. | ($\sqrt{2}$+$\sqrt{5}$)π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題¬p是真命題 | |
B. | 命題p是特稱命題 | |
C. | 命題p是全稱命題 | |
D. | 命題p既不是全稱命題也不是特稱命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=-f({x+\frac{π}{2}})$ | B. | $f(x)=f({-x+\frac{π}{2}})$ | C. | $f(x)•f({x+\frac{π}{2}})=1$ | D. | $f(x)=-f({-x+\frac{π}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 16 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 1 | D. | -1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com