設(shè){an}是公差不為零的等差數(shù)列,a2=2,且a1,a3,a9成等比數(shù)列,則數(shù)列{an}的前n項和Sn=( 。
A、
n2
4
+
7n
4
B、
n2
2
+
3n
2
C、
n2
4
+
3n
4
D、
n2
2
+
n
2
考點:等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)出等差數(shù)列的公差,由已知結(jié)合a1,a3,a9成等比數(shù)列求得公差,進(jìn)一步求得首項,代入等差數(shù)列的前n項和得答案.
解答: 解:設(shè)等差數(shù)列{an}的公差為d(d≠0),
由a2=2,且a1,a3,a9成等比數(shù)列,得
(2+d)2=(2-d)(2+7d),解得d=1.
∴a1=a2-d=2-1=1.
Sn=na1+
n(n-1)d
2
=n+
n(n-1)
2
=
n2
2
+
n
2

故選:D.
點評:本題考查了等差數(shù)列的通項公式,考查了等差數(shù)列的前n項和,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象是連續(xù)不斷的一條曲線,且滿足 f(1)>0,f(5)<0,若 f(3)>0.則f(x)在下列區(qū)間內(nèi)必有零點的是( 。
A、(1,3)
B、(3,5)
C、(2,4)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且滿足:b2+c2-a2=bc,設(shè)函數(shù)f(x)=sin2x•cosA-cos2x•sinA.
(Ⅰ)求A的值;
(Ⅱ)求函數(shù)f(x)在[
π
6
3
]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α+
π
12
)=
1
4
,則sin(
12
-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=xsinx,則f′(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過坐標(biāo)原點O的兩條互相垂直的直線與拋物線y=ax2(a>)分別相交于A、B兩點.
(1)求弦AB的中點M的軌跡方程;
(2)求△OAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}、{bn}滿足
an
bn
=
3n+2
4n+3
(n∈N*),且前n項和分別為An、Bn,則
A5
B5
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,三個內(nèi)角A、B、C對應(yīng)的三邊長分別為a、b、c,且有4bcosAcosB=9asin2B.
(1)求tanA-tanB的值;
(2)求tanC的最大值,并判斷此時△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2≤2,a3≤4,a1+a4≥4,當(dāng)a4取得最大值時,數(shù)列{an}的公差為
 

查看答案和解析>>

同步練習(xí)冊答案