12.若f(x)=ax3+bx2+cx+d(a>0)為增函數(shù),則(  )
A.b2-4ac>0B.b>0,c>0C.b=0,c>0D.b2-3ac≤0

分析 求出函數(shù)的導(dǎo)數(shù),結(jié)合二次函數(shù)的性質(zhì)求出答案即可.

解答 解:f′(x)=3ax2+2bx+c,
若f(x)(a>0)為增函數(shù),
則△=4b2-12ac≤0,
即b2-3ac≤0,
故選:D.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=3+tsinα}\end{array}\right.$(t為參數(shù),0≤α<π),以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(Ⅰ)若極坐標(biāo)為$({\sqrt{2},\frac{π}{4}})$的點A在曲線C1上,求曲線C1與曲線C2的交點坐標(biāo);
(Ⅱ)若點P的坐標(biāo)為(-1,3),且曲線C1與曲線C2交于B,D兩點,求|PB|•|PD|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=sinx-cosx且f′(x0)=f(x0)(x0∈[0,π]),則x0=( 。
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ex-ax(a為常數(shù))的圖象與y軸交于點A,曲線y=f(x)在點A處的切線斜率為-1.
(1)求a的值及函數(shù)f(x)的極值;
(2)設(shè)g(x)=ex-x2,當(dāng)x>0時,g(x)>0恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=(x+1)2+aln(x+2)+b(a∈R,b∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)存在兩個極值點,且極小值恒小于零,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=nlnx-$\frac{{e}^{x}}{{e}^{n}}$+2016,n為大于零的常數(shù).
(1)求f(x)的單調(diào)區(qū)間;
(2)若x∈(0,$\frac{{t}^{2}+(2n-1)t}{2}$),t∈(0,2),求函數(shù)f(x)的極值點;
(3)觀察f(x)的單調(diào)性及最值,證明:ln$\frac{{n}^{2}+1}{{n}^{2}}$<$\frac{{e}^{\frac{1}{n}}-1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,棱長為1的正方體ABCD-A1B1C1D1中,M為線段A1B上的動點,則下列結(jié)論正確的有(  )
①三棱錐M-DCC1的體積為定值    ②DC1⊥D1M
③∠AMD1的最大值為90°   ④AM+MD1的最小值為2.
A.①②B.①②③C.③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,正方形的四個頂點為O(0,0),A(1,0),B(1,1).C(0,1),曲線y=x2經(jīng)過點B,現(xiàn)將一質(zhì)點隨機投入正方形中,則質(zhì)點落在圖中陰影區(qū)域的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=5°x+20°,g(x)=$\frac{π}{30}$x+$\frac{π}{6}$,若f(x+T)與f(x)終邊相同,g(x+T)與g(x)終邊也相同,求非零常數(shù)T的值.

查看答案和解析>>

同步練習(xí)冊答案