【題目】2017年是內(nèi)蒙古自治區(qū)成立70周年.某市旅游文化局為了慶祝內(nèi)蒙古自治區(qū)成立70周年,舉辦了第十三屆成吉思汗旅游文化周.為了了解該市關(guān)注“旅游文化周”居民的年齡段分布,隨機(jī)抽取了名年齡在且關(guān)注“旅游文化周”的居民進(jìn)行調(diào)查,所得結(jié)果統(tǒng)計(jì)為如圖所示的頻率分布直方圖.

年齡

單人促銷價(jià)格(單位:元)

(Ⅰ)根據(jù)頻率分布直方圖,估計(jì)該市被抽取市民的年齡的平均數(shù);

(Ⅱ)某旅行社針對“旅游文化周”開展不同年齡段的旅游促銷活動,各年齡段的促銷價(jià)位如表所示.已知該旅行社的運(yùn)營成本為每人元,以頻率分布直方圖中各年齡段的頻率分布作為參團(tuán)旅客的年齡頻率分布,試通過計(jì)算確定該旅行社的這一活動是否盈利;

(Ⅲ)若按照分層抽樣的方法從年齡在, 的居民中抽取人進(jìn)行旅游知識推廣,并在知識推廣后再抽取人進(jìn)行反饋,求進(jìn)行反饋的居民中至少有人的年齡在的概率.

【答案】(1) 0.3,32;(2)旅行社的這一活動是盈利的;(3)

【解析】試題分析:

1頻率分布直方圖中所有小矩形的面積(頻率)之和為1,由此可求得的概率,取各組的中間數(shù)作為各組均值乘以相應(yīng)的頻率后相加可得;

(2)由頻率分布直方圖可得三組的頻率,分別乘以對應(yīng)的促銷價(jià)相加后減去成本為正時(shí)是贏利,為負(fù)時(shí)是不贏利;

(3)把6人分別編號,其中兩個(gè)年齡段的人可用不同的編號,然后用列舉法可得所有抽取2人的組合,并能得出至少有1人的年齡在[50,60]的組合數(shù),從而計(jì)算出概率.

試題解析:

(1)年齡在[30,40)的頻率為1(0.0200.0250.0150.010)×100.3,

故估計(jì)該市被抽取市民的年齡的平均數(shù)x15×0.225×0.2535×0.345×0.1555×0.132.

(2)平均每個(gè)旅客為旅行社帶來的利潤為150×0.2240×0.7180×0.120016>0故旅行社的這一活動是盈利的.

(3)由題意得被抽取的6人中,4人年齡在[10,20)分別記為a,b,c,d;有2人年齡在[50,60],分別記為EF.“抽取2人進(jìn)行反饋”包含的基本事件為{a,b}{a,c},{a,d}{a,E},{aF},{b,c}{b,d}{b,E}{bF},{c,d},{c,E},{c,F},{d,E},{dF},{E,F}15,其中事件“至少有1人的年齡在[50,60]”包含的基本事件為{a,E}{a,F},{b,E}{b,F},{cE},{c,F},{dE},{d,F},{E,F},9,故該事件發(fā)生的概率為P.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某房地產(chǎn)開發(fā)商投資81萬元建一座寫字樓,第一年裝修維護(hù)費(fèi)為1萬元,以后每年增加2萬元,把寫字樓出租,每年收入租金30萬元.

1)若扣除投資和各種裝修維護(hù)費(fèi),則從第幾年開始獲取純利潤?

2)若干年后開發(fā)商為了投資其他項(xiàng)目,有兩種處理方案:①純利潤總和最大時(shí),以10萬元出售該樓;②年平均利潤最大時(shí)以46萬元出售該樓,問哪種方案更優(yōu)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角梯形中, ,將沿折起至,使二面角為直角.

(1)求證:平面平面;

(2)若點(diǎn)滿足, ,當(dāng)二面角為45°時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,手機(jī)的功能逐漸強(qiáng)大,很大程度上代替了電腦、電視.為了了解某高校學(xué)生平均每天使用手機(jī)的時(shí)間是否與性別有關(guān),某調(diào)查小組隨機(jī)抽取了30名男生、20名女生進(jìn)行為期一周的跟蹤調(diào)查,調(diào)查結(jié)果如下表所示:

平均每天使用手機(jī)超過3小時(shí)

平均每天使用手機(jī)不超過3小時(shí)

合計(jì)

男生

25

5

30

女生

9

11

20

合計(jì)

34

16

50

(1)能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為學(xué)生使用手機(jī)的時(shí)間長短與性別有關(guān)?

(2)在這20名女生中,調(diào)查小組發(fā)現(xiàn)共有15人使用國產(chǎn)手機(jī),在這15人中,平均每天使用手機(jī)不超過3小時(shí)的共有9人.從平均每天使用手機(jī)超過3小時(shí)的女生中任意選取3人,求這3人中使用非國產(chǎn)手機(jī)的人數(shù)X的分布列和數(shù)學(xué)期望.

參考公式:

P(K2≥k0)

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2ex+3x2-2x+1+b,x∈R的圖象在x=0處的切線方程為yax+2.

(1)求函數(shù)f(x)的單調(diào)區(qū)間與極值;

(2)若存在實(shí)數(shù)x,使得f(x)-2x2-3x-2-2k≤0成立,求整數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè):實(shí)數(shù)滿足:實(shí)數(shù)滿足.

(1)若,且為真,求實(shí)數(shù)的取值范圍;

(2)若,且的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M過C(1,-1),D(-1,1)兩點(diǎn),且圓心M在x+y-2=0上.

(1)求圓M的方程;

(2)設(shè)點(diǎn)P是直線3x+4y+8=0上的動點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , , 兩兩垂直, ,且 .

(1)求二面角的余弦值;

(2)已知點(diǎn)為線段上異于的點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校微信公眾號收到非常多的精彩留言,學(xué)校從眾多留言者中抽取了100人參加“學(xué)校滿意度調(diào)查”,其留言者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如下:

(1)求這100位留言者年齡的平均數(shù)和中位數(shù);

(2)學(xué)校從參加調(diào)查的年齡在的留言者中,按照分層抽樣的方法,抽出了6人參加“精彩留言”經(jīng)驗(yàn)交流會,贈與年齡在的留言者每人一部價(jià)值1000元的手機(jī),年齡在的留言者每人一套價(jià)值700元的書,現(xiàn)要從這6人中選出3人作為代表發(fā)言,求這3位發(fā)言者所得紀(jì)念品價(jià)值超過2300元的概率.

查看答案和解析>>

同步練習(xí)冊答案