7.已知x1>x2>x3,若不等式$\frac{1}{{{x_1}-{x_2}}}+\frac{2}{{{x_2}-x{\;}_3}}≥\frac{m}{{{x_1}-{x_3}}}$恒成立,則實(shí)數(shù)m的最大值為(  )
A.9B.7C.3+2$\sqrt{2}$D.1+$\sqrt{2}$

分析 通過(guò)變形可知問(wèn)題轉(zhuǎn)化為求$\frac{{x}_{2}-{x}_{3}}{{x}_{1}-{x}_{2}}$+2•$\frac{{x}_{1}-{x}_{2}}{{x}_{2}-{x}_{3}}$的最小值,進(jìn)而利用基本不等式計(jì)算即得結(jié)論.

解答 解:∵x1>x2>x3
∴x1-x2>0,x2-x3>0,x1-x3>0,
又∵$\frac{1}{{{x_1}-{x_2}}}+\frac{2}{{{x_2}-x{\;}_3}}≥\frac{m}{{{x_1}-{x_3}}}$,
∴m≤(x1-x3)($\frac{1}{{x}_{1}-{x}_{2}}$+$\frac{2}{{x}_{2}-{x}_{3}}$)
=$\frac{{x}_{1}-{x}_{2}+{{x}_{2}-x}_{3}}{{x}_{1}-{x}_{2}}$+2•$\frac{{x}_{1}-{x}_{2}+{x}_{2}-{x}_{3}}{{x}_{2}-{x}_{3}}$
=3+$\frac{{x}_{2}-{x}_{3}}{{x}_{1}-{x}_{2}}$+2•$\frac{{x}_{1}-{x}_{2}}{{x}_{2}-{x}_{3}}$,
∵$\frac{{x}_{2}-{x}_{3}}{{x}_{1}-{x}_{2}}$+2•$\frac{{x}_{1}-{x}_{2}}{{x}_{2}-{x}_{3}}$≥2$\sqrt{\frac{{x}_{2}-{x}_{3}}{{x}_{1}-{x}_{2}}•2•\frac{{x}_{1}-{x}_{2}}{{x}_{2}-{x}_{3}}}$=2$\sqrt{2}$,
∴m≤3+2$\sqrt{2}$,
故選:C.

點(diǎn)評(píng) 本題考查基本不等式,考查運(yùn)算求解能力,對(duì)表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.淮南麻鴨資源的開(kāi)發(fā)與利用的流程圖如圖所示,則羽絨加工的前一道工序是( 。
A.孵化鴨雛B.商品鴨飼養(yǎng)
C.商品鴨收購(gòu)、育肥、加工D.羽絨服加工生產(chǎn)體系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,PA⊥平面ABC,點(diǎn)C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點(diǎn)E為線段PB的中點(diǎn),點(diǎn)M在$\widehat{AB}$上,且OM∥AC.
(1)求證:平面MOE⊥平面PCB;
(2)求二面角M-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{t}{2}}\\{y=t}\end{array}\right.$,曲線C的極坐標(biāo)方程為ρ=4sinθ,試判斷直線l與曲線C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-\frac{{\sqrt{3}}}{2}t\\ y=-5+\frac{1}{2}t\end{array}$(t為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=2$\sqrt{3}$cosθ.
(Ⅰ)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說(shuō)明它表示什么曲線;
(Ⅱ)若P是直線l上的一點(diǎn),Q是曲線C上的一點(diǎn),當(dāng)|PQ|取得最小值時(shí),求P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x|a+1≤x≤4a+1},B={x|-3≤x≤5},且A⊆B,則實(shí)數(shù)a的取值范圍是( 。
A.(0,1)B.[0,1]C.(-∞,1]D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-x,-1≤x≤0\\ ln({x+1}).0<x≤4\end{array}$,若g(x)=f(x)-k(x+1)有3個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是$[{\frac{ln5}{5},\frac{1}{e}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=lnx+$\frac{1-x}{ax}$,其中a>0.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[2,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,平面SAB⊥底面ABCD,且SA=SB=$\sqrt{2}$,AD=1,AB=2,BC=3.
(Ⅰ)求證:平面SAD⊥平面SBC;
(Ⅱ)求平面SCD與底面ABCD所成二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案