【題目】電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時(shí),需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時(shí),連續(xù)劇播放時(shí)長、廣告播放時(shí)長、收視人次如下表所示:

連續(xù)劇

連續(xù)劇播放時(shí)長/min

廣告播放時(shí)長/min

收視人次/萬人

70

5

60

60

5

25

電視臺每周安排的甲、乙連續(xù)劇的總播放時(shí)長不多于,廣告的總播放時(shí)長不少于,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍,分別用,表示每周計(jì)劃播出的甲、乙兩套連續(xù)劇的次數(shù),要使總收視人次最多,則電視臺每周播出甲、乙兩套連續(xù)劇的次數(shù)分別為(

A.6,3B.5,2C.4,5D.2,7

【答案】A

【解析】

根據(jù)已知條件列出應(yīng)滿足的條件,注意,表示每周計(jì)劃播出的甲、乙兩套連續(xù)劇的次數(shù),根據(jù)已知條件列出應(yīng)滿足的條件,畫出可行域,設(shè)總收視人次為萬,則目標(biāo)函數(shù)為,利用線性規(guī)劃找出最優(yōu)解.

解:依題意得,目標(biāo)函數(shù)為,

畫出可行域如下圖所示,由圖可知,目標(biāo)函數(shù)在點(diǎn)處取得最大值.

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系x-O-y中,已知曲線E:(t為參數(shù))

(1)在極坐標(biāo)系O-x中,若A、B、C為E上按逆時(shí)針排列的三個(gè)點(diǎn),△ABC為正三角形,其中A點(diǎn)的極角θ=,求B、C兩點(diǎn)的極坐標(biāo);

(2)在直角坐標(biāo)系x-O-y中,已知?jiǎng)狱c(diǎn)P,Q都在曲線E上,對應(yīng)參數(shù)分別為t=α與t=2α (0<α<2π),M為PQ的中點(diǎn),求 |MO| 的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足:對于其定義域內(nèi)的任何一個(gè)自變量,都有函數(shù)值,則稱函數(shù)上封閉.

1)若下列函數(shù):,的定義域?yàn)?/span>,試判斷其中哪些在上封閉,并說明理由.

2)若函數(shù)的定義域?yàn)?/span>,是否存在實(shí)數(shù),使得在其定義域上封閉?若存在,求出所有的值,并給出證明;若不存在,請說明理由.

3)已知函數(shù)在其定義域上封閉,且單調(diào)遞增,若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐SABCD中,四邊形ABCD為平行四邊形,BAAC,SAAD,SCCD

Ⅰ)求證:ACSB;

Ⅱ)若ABACSA=3,E為線段BC的中點(diǎn),F為線段SB上靠近B的三等分點(diǎn),求直線SC與平面AEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種熱飲需用開水沖泡,其基本操作流程如下:①先將水加熱到100,水溫與時(shí)間近似滿足一次函數(shù)關(guān)系;②用開水將熱飲沖泡后在室溫下放置,溫度與時(shí)間近似滿足函數(shù)的關(guān)系式為 為常數(shù)), 通常這種熱飲在40時(shí),口感最佳,某天室溫為時(shí),沖泡熱飲的部分?jǐn)?shù)據(jù)如圖所示,那么按上述流程沖泡一杯熱飲,并在口感最佳時(shí)飲用,最少需要的時(shí)間為

A. 35 B. 30

C. 25 D. 20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中直線與拋物線C交于AB兩點(diǎn),且

C的方程;

D為直線外一點(diǎn),且的外心MC上,求M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.

)求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓C1(a>b>0)的離心率為,橢圓上動(dòng)點(diǎn)P到一個(gè)焦點(diǎn)的距離的最小值為3(1)

(1) 求橢圓C的標(biāo)準(zhǔn)方程;

(2) 已知過點(diǎn)M(0,-1)的動(dòng)直線l與橢圓C交于A,B兩點(diǎn),試判斷以線段AB為直徑的圓是否恒過定點(diǎn),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】漁民出海打魚,為了保證獲得的魚新鮮,魚被打上岸后,要在最短的時(shí)間內(nèi)將其分揀、冷藏,若不及時(shí)處理,打上來的魚很快地失去新鮮度(以魚肉內(nèi)的三甲胺量的多少來確定魚的新鮮度.三甲胺是一種揮發(fā)性堿性氨,是氨的衍生物,它是由細(xì)菌分解產(chǎn)生的.三甲胺量積聚就表明魚的新鮮度下降,魚體開始變質(zhì)進(jìn)而腐。.已知某種魚失去的新鮮度與其出海后時(shí)間(分)滿足的函數(shù)關(guān)系式為.若出海后10分鐘,這種魚失去的新鮮度為10%,出海后20分鐘,這種魚失去的新鮮度為20%,那么若不及時(shí)處理,打上來的這種魚在多長時(shí)間后開始失去全部新鮮度(已知,結(jié)果取整數(shù))(

A.33分鐘B.40分鐘C.43分鐘D.50分鐘

查看答案和解析>>

同步練習(xí)冊答案