已知如圖①所示,矩形紙片AA′A1′A1,點(diǎn)B、C、B1、C1分別為AA′、A1A1′的三等分點(diǎn),將矩形紙片沿BB1、CC1折成如圖②形狀(正三棱柱),若面對(duì)角線AB1⊥BC1,求證:A1C⊥AB1.
(圖①)
(圖②)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第6課時(shí)練習(xí)卷(解析版) 題型:解答題
在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是邊長為1的正方形,E、F分別是棱B1B、DA的中點(diǎn).
(1)求二面角D1-AE-C的大小;
(2)求證:直線BF∥平面AD1E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第4課時(shí)練習(xí)卷(解析版) 題型:解答題
在如圖所示的多面體中,已知正三棱柱ABCA1B1C1的所有棱長均為2,四邊形ABDC是菱形.
(1)求證:平面ADC1⊥平面BCC1B1;
(2)求該多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第3課時(shí)練習(xí)卷(解析版) 題型:解答題
在空間四邊形ABCD中,已知AC⊥BD,AD⊥BC,求證:AB⊥CD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第3課時(shí)練習(xí)卷(解析版) 題型:填空題
已知l,m是兩條不同的直線,α、β是兩個(gè)不同的平面,有下列四個(gè)命題:
①若lβ,且α⊥β,則l⊥α;
②若l⊥β,且α∥β,則l⊥α;
③若l⊥β,且α⊥β,則l∥α;
④若α∩β=m,且l∥m,則l∥α.
則所有正確的命題是________.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第3課時(shí)練習(xí)卷(解析版) 題型:填空題
下列命題:①一條直線在平面內(nèi)的射影是一條直線;②在平面內(nèi)射影是直線的圖形一定是直線;③在同一平面內(nèi)的射影長相等,則斜線長相等;④兩斜線與平面所成的角相等,則這兩斜線互相平行.其中真命題的個(gè)數(shù)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第2課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖所示,在直三棱柱ABCA1B1C1中,D、E分別為AA1、CC1的中點(diǎn),AC⊥BE,點(diǎn)F在線段AB上,且AB=4AF.若M為線段BE上一點(diǎn),試確定M在線段BE上的位置,使得C1D∥平面B1FM.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第1課時(shí)練習(xí)卷(解析版) 題型:填空題
從正方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)中任意取4個(gè)不同的頂點(diǎn),這4個(gè)頂點(diǎn)可能是:
(1)矩形的4個(gè)頂點(diǎn);
(2)每個(gè)面都是等邊三角形的四面體的4個(gè)頂點(diǎn);
(3)每個(gè)面都是直角三角形的四面體的4個(gè)頂點(diǎn);
(4)有三個(gè)面是等腰直角三角形,有一個(gè)面是等邊三角形的四面體的4個(gè)頂點(diǎn).
其中正確的結(jié)論有________個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第5課時(shí)練習(xí)卷(解析版) 題型:解答題
已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的公比為q,且0<q<.
(1)在數(shù)列{an}中是否存在三項(xiàng),使其成等差數(shù)列?說明理由;
(2)若a1=1,且對(duì)任意正整數(shù)k,ak-(ak+1+ak+2)仍是該數(shù)列中的某一項(xiàng).
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,試用S2011表示T2011.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com