【題目】如圖,已知在等腰梯形中,,,,,=60°,沿,折成三棱柱.
(1)若,分別為,的中點(diǎn),求證:∥平面;
(2)若,求二面角的余弦值
【答案】(1)見(jiàn)解析;(2)
【解析】
分析:(1)取的中點(diǎn),連接,,在三角形中,得到,證得平面,又由,分別為,的中點(diǎn)證得平面,即可證得面平面,利用面面平行的性質(zhì),即可得到平面.
(2)建立如圖所示的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解二面角的余弦值.
詳解:(1)取的中點(diǎn),連接,,在三角形中,
∵,分別為,的中點(diǎn),∴,
∵平面,平面,∴平面.
由于,分別為,的中點(diǎn),由棱柱的性質(zhì)可得,
∵平面,平面,∴平面.
又平面,平面,,
∴平面平面,∵平面,
∴平面.
(2)連接,在中,,,
∴,又,,
∴,∴,又且,
∴平面.
建立如圖所示的空間直角坐標(biāo)系,
可得,,,,
,,.
設(shè)平面的法向量為,
則,則,令,
得,則為平面的一個(gè)法向量,
設(shè)平面的法向量為,則,
則,令,得,
∴為平面的一個(gè)法向量.
設(shè),所成角為,則,
由圖可知二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為和(萬(wàn)元),它們與投入資金(萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式,.今將120萬(wàn)元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投資金額都不低于20萬(wàn)元.
(Ⅰ)設(shè)對(duì)乙產(chǎn)品投入資金萬(wàn)元,求總利潤(rùn)(萬(wàn)元)關(guān)于的函數(shù)關(guān)系式及其定義域;
(Ⅱ)如何分配使用資金,才能使所得總利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB,BD,DC,CA于點(diǎn)E,F,G,H.
(1)求四面體ABCD的體積;
(2)證明:四邊形EFGH是矩形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是( )
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,在橢圓上(異于橢圓的左、右頂點(diǎn)),過(guò)右焦點(diǎn)作∠的外角平分線的垂線,交于點(diǎn),且(為坐標(biāo)原點(diǎn)),橢圓的四個(gè)頂點(diǎn)圍成的平行四邊形的面積為.
(1)求橢圓的方程;
(2)若直線:()與橢圓交于,兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線交軸于,求當(dāng)三角形的面積最大時(shí),直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
判斷的奇偶性,并作出函數(shù)的圖像;
關(guān)于的方程恰有個(gè)不同的實(shí)數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為奇函數(shù),為常數(shù).
(1)求證:是上的增函數(shù);
(2)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)若關(guān)于的不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com