【題目】雙十一期間某電商準備矩形促銷市場調(diào)查,該電商決定活動,市場調(diào)查,該電商決定從2種服裝商品,2種家電商品,3種日用商品中,選出3種商品進行促銷活動.
(1)試求選出的3種商品中至多有一種是家電商品的概率;
(2)電商對選出的某商品采用促銷方案是有獎銷售,顧客購買該商品,一共有3次抽獎的機會,若中獎,則每次都活動數(shù)額為40元的獎券,假設顧客每次抽獎時中獎的概率都是 ,且每次中獎互不影響,設一位顧客中獎金額為隨機變量ξ,求ξ的分布列和期望.
【答案】
(1)解:設“選出的3種商品中至多有一種是家電商品”為事件A,則P(A)= =
(2)解:ξ的可能取值為0,40,80,120.則P(ξ=0)= = ,P(ξ=40)= = ,P(ξ=80)= = ,P(ξ=120)= = .∴ξ的分布列為:
ξ | 0 | 40 | 80 | 120 |
P |
∴Eξ=0+ +120× =60.
【解析】(1)設“選出的3種商品中至多有一種是家電商品”為事件A,可得P(A)= .(2)ξ的可能取值為0,40,80,120.利用二項分布列計算公式即可得出.
【考點精析】解答此題的關鍵在于理解離散型隨機變量及其分布列的相關知識,掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C1:y2=8ax(a>0),直線l傾斜角是45°且過拋物線C1的焦點,直線l被拋物線C1截得的線段長是16,雙曲線C2: ﹣ =1的一個焦點在拋物線C1的準線上,則直線l與y軸的交點P到雙曲線C2的一條漸近線的距離是( )
A.2
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】幾個月前,成都街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題,然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或?qū)⒐蚕韱诬囌紴椤八接小钡龋?為此,某機構就是否支持發(fā)展共享單車隨機調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計如表:
年齡 | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
受訪人數(shù) | 5 | 6 | 15 | 9 | 10 | 5 |
支持發(fā)展 | 4 | 5 | 12 | 9 | 7 | 3 |
(1)由以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發(fā)展共享單車有關系;
年齡低于35歲 | 年齡不低于35歲 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(2)若對年齡在[15,20)[20,25)的被調(diào)查人中隨機選取兩人進行調(diào)查,記選中的4人中支持發(fā)展共享單車的人數(shù)為X,求隨機變量X的分布列及數(shù)學期望. 參考數(shù)據(jù):
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2= ,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解一片經(jīng)濟林的生長情況,隨機抽測了其中60株樹木的底部周長(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測的60株樹木中,有株樹木的底部周長小于110cm.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知DP⊥y軸,點D為垂足,點M在線段DP的延長線上,且滿足|DP|=|PM|,當點P在圓x2+y2=3上運動時
(1)求點M的軌跡C的方程;
(2)直線l:x=my+3(m≠0)交曲線C于A、B兩點,設點B關于x軸的對稱點為B1(點B1與點A不重合),且直線B1A與x軸交于點E. ①證明:點E是定點;
②△EAB的面積是否存在最大值?若存在,求出最大值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣mex(m∈R,e為自然對數(shù)的底數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)≤e2x對x∈R恒成立,求實數(shù)m的取值范圍;
(3)設x1 , x2(x1≠x2)是函數(shù)f(x)的兩個兩點,求證x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4﹣4;坐標系與參數(shù)方程 已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立坐標系,曲線C2的坐標系方程是ρ=2,正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2, ).
(1)求點A,B,C,D的直角坐標;
(2)設P為C1上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax+x2﹣xlna(a>0,a≠1).
(1)求函數(shù)f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)單調(diào)增區(qū)間;
(3)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然對數(shù)的底數(shù)),求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com