【題目】選修4﹣4;坐標(biāo)系與參數(shù)方程 已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,曲線C2的坐標(biāo)系方程是ρ=2,正方形ABCD的頂點(diǎn)都在C2上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2, ).
(1)求點(diǎn)A,B,C,D的直角坐標(biāo);
(2)設(shè)P為C1上任意一點(diǎn),求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.

【答案】
(1)解:點(diǎn)A,B,C,D的極坐標(biāo)為

點(diǎn)A,B,C,D的直角坐標(biāo)為


(2)解:設(shè)P(x0,y0),則 為參數(shù))

t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ

∵sin2φ∈[0,1]

∴t∈[32,52]


【解析】(1)確定點(diǎn)A,B,C,D的極坐標(biāo),即可得點(diǎn)A,B,C,D的直角坐標(biāo);(2)利用參數(shù)方程設(shè)出P的坐標(biāo),借助于三角函數(shù),即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用橢圓的參數(shù)方程,掌握橢圓的參數(shù)方程可表示為即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,平面PAC⊥平面ABCD,AC=2BC=2CD=4,∠ACB=∠ACD=60°.
(1)證明:CP⊥BD;
(2)若AP=PC=2 ,求二面角A﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,求b的取值范圍;
(2)若F(x+1)>b對(duì)任意x∈(0,+∞)恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙十一期間某電商準(zhǔn)備矩形促銷(xiāo)市場(chǎng)調(diào)查,該電商決定活動(dòng),市場(chǎng)調(diào)查,該電商決定從2種服裝商品,2種家電商品,3種日用商品中,選出3種商品進(jìn)行促銷(xiāo)活動(dòng).
(1)試求選出的3種商品中至多有一種是家電商品的概率;
(2)電商對(duì)選出的某商品采用促銷(xiāo)方案是有獎(jiǎng)銷(xiāo)售,顧客購(gòu)買(mǎi)該商品,一共有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次都活動(dòng)數(shù)額為40元的獎(jiǎng)券,假設(shè)顧客每次抽獎(jiǎng)時(shí)中獎(jiǎng)的概率都是 ,且每次中獎(jiǎng)互不影響,設(shè)一位顧客中獎(jiǎng)金額為隨機(jī)變量ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豎一塊廣告牌,要制造三角形支架,如圖,要求∠ACB=60°,BC的長(zhǎng)度大于1米,且AC比AB長(zhǎng)0.5米,為了穩(wěn)固廣告牌,要求AC越短越好,則AC最短為(
A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2cos2x+2 sinxcosx+a,且當(dāng)x∈[0, ]時(shí),f(x)的最小值為2.
(1)求a的值,并求f(x)的單調(diào)遞增區(qū)間;
(2)先將函數(shù)y=f(x)的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮小到原來(lái)的 ,再將所得圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求方程g(x)=4在區(qū)間[0, ]上所有根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△AnBnCn的三邊長(zhǎng)分別為an , bn , cn , n=1,2,3…,若b1>c1 , b1+c1=2a1 , an+1=an , bn+1= ,cn+1= ,則∠An的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二階矩陣M有特征值λ=8及對(duì)應(yīng)的一個(gè)特征向量 =[ ],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(﹣1,2)變換成(﹣2,4).
(1)求矩陣M;
(2)求矩陣M的另一個(gè)特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,若不等式f(x)≤3的解集為{|x|﹣1≤x≤5}. (Ⅰ)求實(shí)數(shù)a的值:
(Ⅱ)若不等式f(3x)+f(x+3)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案