14.“x>1“是“2x>1”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 2x>1,解得x>0.即可判斷出結(jié)論.

解答 解:2x>1,解得x>0.
∴“x>1“是“2x>1”的充分不必要條件.
故選:B.

點評 本題考查了函數(shù)的性質(zhì)、不等式的性質(zhì)、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知拋物線C:y2=2px(p>0)的焦點為F,點M(x0,2$\sqrt{2}$)是拋物線C上一點,圓M與y軸相切且與線段MF相交于點A,若$\frac{|MA|}{|AF|}$=2,則p=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某超市從2017年1月甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機抽取100個,并按[0,10],(10,20],(20,30],(30,40],(40,50]分組,得到頻率分布直方圖如下:

假設(shè)甲、乙兩種酸奶獨立銷售且日銷售量相互獨立.
(Ⅰ)寫出頻率分布直方圖(甲)中的a值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為S12與S22,試比較S12與S22的大。ㄖ恍鑼懗鼋Y(jié)論);
(Ⅱ)估計在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個高于20箱且另一個不高于20箱的概率;
(Ⅲ)設(shè)X表示在未來3天內(nèi)甲種酸奶的日銷售量不高于20箱的天數(shù),以日銷售量落入各組的頻率作為概率,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的部分圖象如圖所示,將函數(shù)y=f(x)的圖象向左平移$\frac{4π}{3}$個單位,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)在區(qū)間$[{\frac{π}{2},\frac{5π}{2}}]$上的最大值為( 。
A.3B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線C:y2=4x,直線l:x=-1.
(1)若曲線C上存在一點Q,它到l的距離與到坐標原點的距離相等,求Q的坐標;
(2)過直線l上任一點P作拋物線的兩條切線,切點記為A,B,求證:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線ax+by-8=0(a>0,b>0)被圓x2+y2-2x-4y=0截得的弦長為2$\sqrt{5}$,則ab的最大值是( 。
A.$\frac{5}{2}$B.4C.$\frac{9}{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC中,∠C=90°,且CA=3,點M滿足$\overrightarrow{BM}$=2$\overrightarrow{MA}$,則$\overrightarrow{CM}$•$\overrightarrow{CA}$的值為(  )
A.3B.6C.9D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+m,x<0}\\{{x}^{2}-1,x≥0}\end{array}\right.$其中m>0,若函數(shù)y=f(f(x))-1有3個不同的零點,則m的取值范圍是(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.記[x]為不超過實數(shù)x的最大整數(shù),例如:[2]=2,[1.5]=1,[-0.3]=-1,設(shè)a為正整數(shù),數(shù)列{xn}滿足:x1=a,${x_{n+1}}=[\frac{{{x_n}+[\frac{a}{x_n}]}}{2}](n∈{N^*})$,現(xiàn)有下列命題:
①當a=5時,數(shù)列{xn}的前3項依次為5,3,2;
②對數(shù)列{xn}都存在正整數(shù)k,當n≥k時,總有xn=xk
③當n≥1時,${x_n}>\sqrt{a}-1$;
④對某個正整數(shù)k,若xk+1≥xk,則${x_n}=[\sqrt{a}]$;
其中的真命題個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案