8.已知復(fù)數(shù)z=$\frac{a+i}{i}$(a∈R),i是虛數(shù)單位,在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第四象限,則實(shí)數(shù)a的取值范圍是(0,+∞).

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由實(shí)部大于0且虛部小于0聯(lián)立不等式組求解.

解答 解:∵復(fù)數(shù)z=$\frac{a+i}{i}$=$\frac{(a+i)(-i)}{-{i}^{2}}=1-ai$在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第四象限,
∴-a<0,即a>0,
則實(shí)數(shù)a的取值范圍是(0,+∞).
故答案為:(0,+∞).

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知平面上的曲線l及點(diǎn)P,在l上任取一點(diǎn)Q,線段PQ長(zhǎng)度的最小值稱為點(diǎn)P到曲線l的距離,記作d(P,l).
(1)求點(diǎn)P(3,4)到曲線l:x2+y2=4的距離d(P,l);
(2)設(shè)曲線l:$\left\{\begin{array}{l}{{y}^{2}=1(-1<x<1)}\\{(x-1)^{2}+{y}^{2}=1(1≤x≤2)}\\{(x+1)^{2}+{y}^{2}=1(-2≤x≤-1)}\end{array}\right.$,求點(diǎn)集S={P|2<d(P,l)≤3}所表示圖形的面積;
(3)設(shè)曲線l1:y=0(-1≤x≤1),曲線l2:x2+y2=1,求出到兩條曲線l1,l2距離相等的點(diǎn)的集合Ω={P|d(P,l1)=d(P,l2)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.為了得到函數(shù)y=cos2x的圖象,可將函數(shù)$y=sin({2x-\frac{π}{6}})$的圖象( 。
A.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度D.向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=xlnx+(1-x)ln(1-x),x∈(0,1).
(1)求f(x)的最小值;
(2)若a+b+c=1,a,b,c∈(0,1).求證:alna+blnb+clnc≥(a-2)ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知橢圓的標(biāo)準(zhǔn)方程為$\frac{x^2}{5}+\frac{y^2}{4}=1$,F(xiàn)1,F(xiàn)2為橢圓的左右焦點(diǎn),O為原點(diǎn),P是橢圓在第一象限的點(diǎn),則$\frac{{|{P{F_1}}|-|{P{F_2}}|}}{{|{PO}|}}$的取值范圍( 。
A.$({0,\frac{{\sqrt{5}}}{5}})$B.$({0,\frac{{2\sqrt{5}}}{5}})$C.$({0,\frac{{3\sqrt{5}}}{5}})$D.$({0,\frac{{6\sqrt{5}}}{5}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且an=4$+(-\frac{1}{2})^{n-1}$,若對(duì)于任意的n∈N*,都有1≤x(Sn-4n)≤3恒成立,則實(shí)數(shù)x的取值范圍是[1,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖所示,在南海上有兩座燈塔A、B,這兩座燈塔之間的距離為60千米,有個(gè)貨船從島P處出發(fā)前往距離120千米島Q處,行駛致一半路程時(shí)剛好到達(dá)M處,恰巧M處在燈塔A的正南方,也正好在燈塔B的正西方,向量$\overrightarrow{PQ}$⊥$\overrightarrow{BA}$,則$\overrightarrow{AQ}•\overrightarrow{BP}$=-3600.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=(x+1)lnx-a(x-1)在x=e處的切線在y軸上的截距為2-e.
(1)求a的值;
(2)函數(shù)f(x)能否在x=1處取得極值?若能取得,求此極值,若不能說(shuō)明理由.
(3)當(dāng)1<x<2時(shí),試比較$\frac{2}{x-1}$與 $\frac{1}{lnx}$-$\frac{1}{ln(2-x)}$大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是B1B,BC的中點(diǎn),
(1)證明:EF∥A1D;
(2)證明:A1E,AB,DF三線共點(diǎn);
(3)問:線段CD上是否存在一點(diǎn)G,使得直線FG與平面A1EC1所成角的正弦值為$\frac{{\sqrt{3}}}{3}$,若存在,請(qǐng)指出點(diǎn)G的位置,說(shuō)明理由;若沒有,也請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案