3.若$\overline z$是z的共軛復(fù)數(shù),且滿足$\overline z({1-i})$=3+i,則z=( 。
A.1+2iB.-1+2iC.1-2iD.-1-2i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:$\overline z({1-i})$=3+i,∴$\overline z({1-i})$(1+i)=(3+i)(1+i),∴2$\overline{z}$=2+4i,即$\overline{z}$=1+2i.  
則z=1-2i.
故選:C.

點評 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(bmodm),例如10≡4(bmod6),如圖程序框圖的算法源于我國古代《孫子算經(jīng)》中的“孫子定理”的某一環(huán)節(jié),執(zhí)行該框圖,輸入a=2,b=3,c=5,則輸出的N=(  )
A.6B.9C.12D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上有一個點A,它關(guān)于原點的對稱點為B,點F為橢圓的右焦點,且滿足AF⊥BF,當(dāng)∠ABF=$\frac{π}{12}$時,橢圓的離心率為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知點M(x,y)為平面區(qū)域D:$\left\{\begin{array}{l}{x-y≥0}\\{y-\frac{1}{x}≤0}\\{y≥a,(0<a<1)}\end{array}\right.$內(nèi)的一個動點,若z=$\frac{y+1}{x}$的最大值為3,則區(qū)域D的面積為(  )
A.ln2+$\frac{5}{8}$B.ln2-$\frac{1}{2}$C.ln2+$\frac{1}{8}$D.ln2-$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大;
(Ⅱ)若a=2,c=3,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0而是它的一個均值點.
例如y=|x|是[-2,2]上的“平均值函數(shù)”,0就是它的均值點.給出以下命題:
①函數(shù)f(x)=sinx-1是[-π,π]上的“平均值函數(shù)”;
②若y=f(x)是[a,b]上的“平均值函數(shù)”,則它的均值點x0≤$\frac{a+b}{2}$;
③若函數(shù)f(x)=x2+mx-1是[-1,1]上的“平均值函數(shù)”,則實數(shù)m∈(-2,0);
④若f(x)=lnx是區(qū)間[a,b](b>a≥1)上的“平均值函數(shù)”,x0是它的一個均值點,則lnx0<$\frac{1}{{\sqrt{ab}}}$.
其中的真命題有①③④(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知3sin2θ=5cosθ+1,則cos(π+2θ)=$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥1}\\{x≤2}\end{array}\right.$,則z=$\frac{y+3}{x}$的最小值為( 。
A.-1B.7C.$\frac{5}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義運(yùn)算$|\begin{array}{l}{a}&{c}\\&eqadnr2\end{array}|$=ad-bc,復(fù)數(shù)z滿足$|\begin{array}{l}{z}&{1}\\{i}&{i}\end{array}|$=2+i,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案