11.如圖為一個(gè)求10個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語(yǔ)句為( 。
A.i>10B.i<10C.i>=10D.i<=10

分析 由已知中的程序語(yǔ)句,結(jié)合已知中程序的功能是求10個(gè)數(shù)的平均數(shù),
分析程序中循環(huán)變量的初值、步長(zhǎng),易得到滿足條件的循環(huán)變量的終值,
進(jìn)而得到繼續(xù)循環(huán)的條件和和退出循環(huán)的條件.

解答 解:由已知中的程序語(yǔ)句可得這是一個(gè)直到型循環(huán),
當(dāng)滿足條件時(shí)退出循環(huán);
由于第1次判斷條件時(shí)i值等于2,
故第10次判斷條件時(shí)i值等11,
即i≤10時(shí)繼續(xù)循環(huán);
故退出循環(huán)的條件為i>10.
故選:A.

點(diǎn)評(píng) 本題考查了循環(huán)語(yǔ)句的應(yīng)用問(wèn)題,解題時(shí)要分析循環(huán)變量的初值和步長(zhǎng),進(jìn)而得到循環(huán)變量的終值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=-x3+12x+m.
(1)若x∈R,求函數(shù)f(x)的極大值與極小值之差;
(2)若函數(shù)y=f(x)有三個(gè)零點(diǎn),求m的取值范圍;
(3)當(dāng)x∈[-1,3]時(shí),f(x)的最小值為-2,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹(shù)棵數(shù),乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn),在圖中以x表示
附:方差S2=$\frac{1}{n}$[(x1-x)2+(x2-x)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$為x1,x2,…,xn的平均數(shù)
(1)如果x=8,求乙組同學(xué)植樹(shù)棵數(shù)的平均數(shù)和方差;
(2)如果x=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹(shù)總棵數(shù)為19的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.長(zhǎng)春市的“名師云課”活動(dòng)自開(kāi)展以來(lái)獲得廣大家長(zhǎng)和學(xué)子的高度贊譽(yù),在我市推出的第二季名師云課中,數(shù)學(xué)學(xué)科共計(jì)推出36節(jié)云課,為了更好地將課程內(nèi)容呈現(xiàn)給廣大學(xué)子,現(xiàn)對(duì)某一時(shí)段云課的點(diǎn)擊量進(jìn)行統(tǒng)計(jì):
點(diǎn)擊量[0,1000](1000,3000](3000,+∞)
節(jié)數(shù)61812
(Ⅰ)現(xiàn)從36節(jié)云課中采用分層抽樣的方式選出6節(jié),求選出的點(diǎn)擊量超過(guò)3000的節(jié)數(shù).
(Ⅱ)為了更好地搭建云課平臺(tái),現(xiàn)將云課進(jìn)行剪輯,若點(diǎn)擊量在區(qū)間[0,1000]內(nèi),則需要花費(fèi)40分鐘進(jìn)行剪輯,若點(diǎn)擊量在區(qū)間(1000,3000]內(nèi),則需要花費(fèi)20分鐘進(jìn)行剪輯,點(diǎn)擊量超過(guò)3000,則不需要剪輯,現(xiàn)從(Ⅰ)中選出的6節(jié)課中任意取出2節(jié)課進(jìn)行剪輯,求剪輯時(shí)間為40分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知曲線C1的方程為$\left\{\begin{array}{l}x=1+3cosω\\ y=2+3sinω\end{array}\right.$(ω為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$\sqrt{2}ρcos(θ-\frac{π}{4})=a$(a∈R).
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)曲線C1上有3個(gè)點(diǎn)到曲線C2的距離等于1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.函數(shù)f(x)=6cos2$\frac{ωx}{2}+\sqrt{3}$sinωx-3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與l軸的交點(diǎn),且△ABC為正三角形.
(Ⅰ)求f(x)解析式及其值域;
(Ⅱ)若f(x0)=$\frac{8\sqrt{3}}{5}$,且x0∈(-$\frac{10}{3}$,$\frac{2}{3}$),求f(x0+1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.有5條長(zhǎng)度分別為1,3,5,6,7的線段,從中任意取出3條,則所取3條線段可以構(gòu)成三角形的概率為0.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.圓心角為1弧度半徑為2的扇形的面積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為$\frac{2π}{3}$,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=-3$\overrightarrow{{e}_{2}}$,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為( 。
A.-$\frac{3\sqrt{3}}{2}$B.-$\frac{3}{2}$C.$\frac{3}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案