若不等式sin2x+2acosx≤a2+3a-2(a<0)對一切x∈R恒成立,則實數(shù)a的最大值是
 
考點:函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:化正弦為余弦,然后換元,對a分類求出a的范圍即可.
解答: 解∵不等式sin2x+2acosx≤a2+3a-2(a<0)對一切x∈R恒成立,
∴1-cos2x+2acosx≤a2+3a-2,
∴cos2x-2acosx+a2+3a-3≥0對一切x∈R恒成立,
令cosx=t,t∈[-1,1],
則t2-2at+a2+3a-3≥0,對一切t∈[-1,1]恒成立,
設(shè)函數(shù)f(t)=t2-2at+a2+3a-3,
則對稱軸x=a<0,
當-1<a<0時,
f(1)≥0
f(-1)≥0
a2+a-2≥0
a2+5a-2≥0
解集為空集,
當a≤-1時,f(-1)=a2+5a-2≥0,
解得a≤
-5-
33
2
,
故a的最大值為
-5-
33
2
,
故答案為:
-5-
33
2
,
點評:本題考查了三角函數(shù)的值域,考查了利用換元法求二次函數(shù)的最值,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=1,AB=2,∠A的平分線AD=
6
2
,則BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)由x-ln[f(x)+1]=0確定,則導(dǎo)函數(shù)y=f′(x)圖象的大致形狀是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、1
B、2
C、
1
3
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法計算函數(shù)f(x)=3x4-2x3-6x-17,當x=2時,則f(x)的值為( 。
A、0B、2C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式|x+2|+|x|≤a的解集不是空集,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列中{an}中,an+1=
2an
2+an
,a1=1,則a5=( 。
A、
2
5
B、
1
3
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、樣本10,6,8,5,6的標準差是3.3.
B、“p∨q為真”是“p∧q為真”的充分不必要條件
C、已知點A(-2,1)在拋物線y2=2px(p>0)的準線上,記其焦點為F,則直線AF的斜率等于-4
D、設(shè)有一個回歸直線方程為
?
y
=2-1.5x
,則變量x每增加一個單位,
?
y
平均減少1.5個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯誤的是( 。
A、命題p“?x∈R,ax>0(a>0且a≠1),則¬p:?x0∈R,ax0≤0
B、如果命題“¬p”與命題“p或q”都是真命題,那么命題q一定是真命題
C、特稱命題“?x∈R,使-2x2+x-4=0”是假命題
D、命題“若a,b都是偶數(shù),則a+b是偶數(shù)”的否命題是“若a,b都不是偶數(shù),則a+b不是偶數(shù)”

查看答案和解析>>

同步練習(xí)冊答案