6.執(zhí)行如圖所示的程序框圖,若輸入t的值為5,則輸出的S的值為(  )
A.$\frac{11}{8}$B.$\frac{9}{16}$C.$\frac{5}{4}$D.$\frac{21}{16}$

分析 由已知中的程序框圖及已知中輸入t的值為5,可得:進(jìn)入循環(huán)的條件為k<5,即k=2,3,4.模擬程序的運(yùn)行結(jié)果,即可得到輸出的S值.

解答 解:模擬程序的運(yùn)行,可得
t=5,S=1,k=2
滿(mǎn)足條件k<5,執(zhí)行循環(huán)體,S=1+$\frac{1}{2}$=$\frac{3}{2}$,k=3
滿(mǎn)足條件k<5,執(zhí)行循環(huán)體,S=$\frac{3}{2}$-$\frac{1}{4}$=$\frac{5}{4}$,k=4
滿(mǎn)足條件k<5,執(zhí)行循環(huán)體,S=$\frac{5}{4}$+$\frac{1}{8}$=$\frac{11}{8}$,k=5
不滿(mǎn)足條件k<5,退出循環(huán),輸出S的值為$\frac{11}{8}$.
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,在寫(xiě)程序的運(yùn)行結(jié)果時(shí),我們常使用模擬循環(huán)的變法,但程序的循環(huán)體中變量比較多時(shí),要用表格法對(duì)數(shù)據(jù)進(jìn)行管理,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在二項(xiàng)式(2x+a)5的展開(kāi)式中,含x2項(xiàng)的系數(shù)等于320,則$\int_1^a{({{e^x}+2x})}dx$=( 。
A.e2-e+3B.e2+4C.e+1D.e+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知單位向量$\overrightarrow a,\overrightarrow b$滿(mǎn)足$|{\overrightarrow a+3\overrightarrow b}|=\sqrt{13}$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知x>0,y>0,$\frac{2}{x}+\frac{1}{y}=\frac{1}{3}$,x+2y>m2-2m恒成立,則m的取值范圍是( 。
A.[-6,4]B.[-4,6]C.(-4,6)D.(-6,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知復(fù)數(shù)Z=$\frac{1}{1+i}+{i^3}$(i為虛數(shù)單位),則復(fù)數(shù)Z的模為( 。
A.2B.$\frac{10}{4}$C.$\frac{{\sqrt{10}}}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=2cos$\frac{ωx}{2}$(sin$\frac{ωx}{2}$-$\sqrt{3}$cos$\frac{ωx}{2}$)+$\sqrt{3}$(ω>0)在區(qū)間($\frac{π}{3}$,π)上有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)ω的范圍為($\frac{1}{3}$,1)∪($\frac{4}{3}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={2,4,6,8},$B=\left\{{x|y=\sqrt{4-x}}\right\}$,則A∩B=( 。
A.{2}B.{2,4}C.{2,4,6}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.按如圖所示的程序框圖,若輸入a=110101,則輸出的b=( 。
A.53B.51C.49D.47

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和Sn=2(an-1),等差數(shù)列{bn}滿(mǎn)足b1=a1,b4=a3,其中n∈N*.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若Cn=(-1)nbnbn+1,求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

同步練習(xí)冊(cè)答案