3.已知函數(shù)f(x)=|x+1|-|2x-3|.
(Ⅰ)在圖中畫出y=f(x)的圖象;
(Ⅱ)求不等式|f(x)|>1的解集.

分析 (Ⅰ)運(yùn)用分段函數(shù)的形式寫出f(x)的解析式,由分段函數(shù)的畫法,即可得到所求圖象;
(Ⅱ)分別討論當(dāng)x≤-1時,當(dāng)-1<x<$\frac{3}{2}$時,當(dāng)x≥$\frac{3}{2}$時,解絕對值不等式,取交集,最后求并集即可得到所求解集.

解答 解:(Ⅰ)f(x)=$\left\{\begin{array}{l}{x-4,x≤-1}\\{3x-2,-1<x<\frac{3}{2}}\\{4-x,x≥\frac{3}{2}}\end{array}\right.$,
由分段函數(shù)的圖象畫法,可得f(x)的圖象,如右:
(Ⅱ)由|f(x)|>1,可得
當(dāng)x≤-1時,|x-4|>1,解得x>5或x<3,即有x≤-1;
當(dāng)-1<x<$\frac{3}{2}$時,|3x-2|>1,解得x>1或x<$\frac{1}{3}$,
即有-1<x<$\frac{1}{3}$或1<x<$\frac{3}{2}$;
當(dāng)x≥$\frac{3}{2}$時,|4-x|>1,解得x>5或x<3,即有x>5或$\frac{3}{2}$≤x<3.
綜上可得,x<$\frac{1}{3}$或1<x<3或x>5.
則|f(x)|>1的解集為(-∞,$\frac{1}{3}$)∪(1,3)∪(5,+∞).

點(diǎn)評 本題考查絕對值函數(shù)的圖象和不等式的解法,注意運(yùn)用分段函數(shù)的圖象的畫法和分類討論思想方法,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x||x|<2},B={-1,0,1,2,3},則A∩B=( 。
A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知一組數(shù)據(jù)4.7,4.8,5.1,5.4,5.5,則該組數(shù)據(jù)的方差是0.1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)(1+i)x=1+yi,其中x,y是實(shí)數(shù),則|x+yi|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某公司計(jì)劃購買2臺機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時,可以額外購買這種零件作為備件,每個200元.在機(jī)器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機(jī)器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得如圖柱狀圖:
以這100臺機(jī)器更換的易損零件數(shù)的頻率代替1臺機(jī)器更換的易損零件數(shù)發(fā)生的概率,記X表示2臺機(jī)器三年內(nèi)共需更換的易損零件數(shù),n表示購買2臺機(jī)器的同時購買的易損零件數(shù).
(Ⅰ)求X的分布列;
(Ⅱ)若要求P(X≤n)≥0.5,確定n的最小值;
(Ⅲ)以購買易損零件所需費(fèi)用的期望值為決策依據(jù),在n=19與n=20之中選其一,應(yīng)選用哪個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若將函數(shù)y=2sin2x的圖象向左平移$\frac{π}{12}$個單位長度,則平移后的圖象的對稱軸為( 。
A.x=$\frac{kπ}{2}$-$\frac{π}{6}$(k∈Z)B.x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z)C.x=$\frac{kπ}{2}$-$\frac{π}{12}$(k∈Z)D.x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若直線y=kx+b是曲線y=lnx+2的切線,也是曲線y=ln(x+1)的切線,則b=1-ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(x+1)lnx-a(x-1).
(I)當(dāng)a=4時,求曲線y=f(x)在(1,f(1))處的切線方程;
(II)若當(dāng)x∈(1,+∞)時,f(x)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知θ是第四象限角,且sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,則tan(θ-$\frac{π}{4}$)=$-\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊答案