6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x>0}\\{2\sqrt{2}cosx,x≤0}\end{array}\right.$,則f[f(-$\frac{π}{4}$)]的值為4.

分析 先求出f(-$\frac{π}{4}$)=2$\sqrt{2}cos(-\frac{π}{4})$=2$\sqrt{2}cos\frac{π}{4}$=2,從而f[f(-$\frac{π}{4}$)]=f(2),由此能求出結(jié)果.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{2}^{x},x>0}\\{2\sqrt{2}cosx,x≤0}\end{array}\right.$,
∴f(-$\frac{π}{4}$)=2$\sqrt{2}cos(-\frac{π}{4})$=2$\sqrt{2}cos\frac{π}{4}$=2,
f[f(-$\frac{π}{4}$)]=f(2)=22=4.
故答案為:4.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知雙曲線C:x2-y2=1及直線l:y=kx+1.
(1)若l與C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)若l與C交于A,B兩點(diǎn),且AB中點(diǎn)橫坐標(biāo)為$\sqrt{2}$,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若圓C1:(x-a)2+y2=4(a>0)與圓C2:x2+(y-$\sqrt{5}$)2=9相外切,則實(shí)數(shù)a的值為$2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.命題“?x∈(0,+∞),x2-3ax+9<0”為假命題,則實(shí)數(shù)a的取值范圍為a≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{5}}{3}$,左頂點(diǎn)、上頂點(diǎn)分別為A,B,△OAB的面積為3(點(diǎn)O為坐標(biāo)原點(diǎn)).
(1)求橢圓C的方程;
(2)若P、Q分別是AB、橢圓C上的動(dòng)點(diǎn),且$\overrightarrow{OP}$=λ$\overrightarrow{OQ}$(λ<0),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,則sin(2α+$\frac{π}{6}$)的值為$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=m,|$\overrightarrow{a}$+$\overrightarrow$|=2.
(1)若|$\overrightarrow{a}$+2$\overrightarrow$|=3,求實(shí)數(shù)m的值;
(2)若$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角為$\frac{2π}{3}$,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.空間幾何體ABCDEF如圖所示.已知面ABCD⊥面ADEF,ABCD為梯形,ADEF為正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G為CE的中點(diǎn).
(Ⅰ)求證:BG∥面ADEF;
(Ⅱ)求證:CB⊥面BDE;
(Ⅲ)求三棱錐E-BDG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),在以原點(diǎn)為極點(diǎn),X軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(1)求C的普通方程和l的傾斜角;
(2)若l和C交于A,B兩點(diǎn),且Q(2,3),求|QA|+|QB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案