分析 先基本事件總數(shù)n=${C}_{5}^{2}$=10,再求出取到的兩張卡片上的數(shù)字之和為偶數(shù)包含的基本事件個數(shù):m=${C}_{3}^{2}+{C}_{2}^{2}$=4,由此能求出取到的兩張卡片上的數(shù)字之和為偶數(shù)的概率.
解答 解:從分別寫有1,2,3,4,5的五張卡片中依次抽取兩張,
假設每張卡片被取到的概率相等,且每張卡片上只有一個數(shù)字,
基本事件總數(shù)n=${C}_{5}^{2}$=10,
取到的兩張卡片上的數(shù)字之和為偶數(shù)包含的基本事件個數(shù):
m=${C}_{3}^{2}+{C}_{2}^{2}$=4,
∴取到的兩張卡片上的數(shù)字之和為偶數(shù)的概率為p=$\frac{4}{10}$=$\frac{2}{5}$.
故答案為:$\frac{2}{5}$.
點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意等可能事件概率計算公式的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{2}{3}$ | C. | -$\frac{2}{3}$ | D. | -$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | $\frac{2}{13}$$\sqrt{13}$ | C. | $\frac{5}{26}$$\sqrt{13}$ | D. | $\frac{7}{20}$$\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<-1 | B. | a>1 | C. | -1<a<1 | D. | a>2$\sqrt{2}$或a<-2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 7 | C. | log713 | D. | log717 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com