(1)已知數(shù)列的前項和為,,,求
(2)已知等差數(shù)列的前項和為,求數(shù)列的前2012項和

(1)  (2)

解析試題分析:(1)根據(jù)題意,由于數(shù)列的前項和為,,, ,故可知通過等比數(shù)列來求和得到
  (本小題6分)
(2)根據(jù)題意,由于等差數(shù)列的前項和為,即可知5a ="15," a =3,公差d=1,那么可知a ,的前n項和利用裂項法可知為     (本小題10分)
考點:數(shù)列的通項公式和求和
點評:解決的關(guān)鍵是根據(jù)數(shù)列的通項公式與前n項和的公式來得到,屬于基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知正項數(shù)列的首項,前項和滿足
(Ⅰ)求證:為等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)記數(shù)列的前項和為,若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是等差數(shù)列,其前項和為;是等比數(shù)列,且
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是一個等差數(shù)列,且
①求的通項;                   ②求項和的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,是等比數(shù)列,且,,
(Ⅰ)求數(shù)列的通項公式
(Ⅱ)數(shù)列滿足,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列
(1)觀察規(guī)律,寫出數(shù)列的通項公式,它是個什么數(shù)列?
(2)若,設 ,求
(3)設,為數(shù)列的前項和,求。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市去年11份曾發(fā)生流感,據(jù)統(tǒng)計,11月1日該市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染者減少30人,到11月30日止,該市在這30日內(nèi)感染該病毒的患者總共8670人,問11月幾日,該市感染此病毒的新患者人數(shù)最多?并求這一天的新患者人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

各項均為正數(shù)的數(shù)列項和為,且.
(1)求數(shù)列的通項公式;
(2)已知公比為的等比數(shù)列滿足,且存在滿足,,求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知 是等差數(shù)列,是公比為的等比數(shù)列,,記為數(shù)列的前項和,
(1)若是大于的正整數(shù),求證:;
(2)若是某一正整數(shù),求證:是整數(shù),且數(shù)列中每一項都是數(shù)列中的項;
(3)是否存在這樣的正數(shù),使等比數(shù)列中有三項成等差數(shù)列?若存在,寫出一個的值,并加以說明;若不存在,請說明理由;

查看答案和解析>>

同步練習冊答案