A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{5\sqrt{5}}{10}$ | C. | $\frac{9}{2}$ | D. | $\frac{3}{2}$ |
分析 設(shè)P(x0,y0),由題意可得|PF1|=a+ex0=3,解得x0.再利用P到右準(zhǔn)線的距離d=$\frac{{a}^{2}}{c}$-x0即可得出.
解答 解:設(shè)P(x0,y0),由橢圓$\frac{x^2}{3}+\frac{y^2}{2}=1$上一點(diǎn)P到左焦點(diǎn)F1的距離為$\frac{\sqrt{3}}{2}$,即|PF1|=a+ex0=$\frac{\sqrt{3}}{2}$,
∴a=$\sqrt{3}$,e=$\frac{\sqrt{3}}{3}$解得x0=-$\frac{3}{2}$.$\frac{{a}^{2}}{c}$=3,
∴P到右準(zhǔn)線的距離d=3$+\frac{3}{2}$=$\frac{9}{2}$.
故選:C.
點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\frac{3}{2},-\frac{3}{2e}})$ | B. | $[{-\frac{3}{2e},-\frac{5}{{3{e^2}}}})$ | C. | $[{-\frac{3}{2},-\frac{5}{{3{e^2}}}})$ | D. | $[{-2e,-\frac{3}{2e}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{4}$] | B. | [$\frac{1}{4}$,1) | C. | (0,$\frac{1}{2}$] | D. | [$\frac{1}{4}$,$\frac{1}{2}$]∪(1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com